

ar
X

iv
:2

30
6.

09
38

8v
2

 [
qu

an
t-

ph
]

 2
2

A
ug

 2
02

4

A Short Introduction to

Quantum Computing for Physicists

Oswaldo Zapata

Abstract

These notes provide an introduction to standard topics on quantum compu-

tation and communication for those who already have a basic knowledge of

quantum mechanics. The main target audience are professional physicists

as well as advanced students of physics; however, engineers and computer

scientists may also benefit from them.

1 Introduction 2

2 Quantum Bits 3

2.1 Classical Bits . 4
2.2 Single Qubits . 4
2.3 Multiple Qubits . 6

3 Quantum Circuits 9

3.1 Classical Circuit Gates . 9
3.2 Single-Qubit Gates . 11
3.3 Multiple Single-Qubit Gates . 15
3.4 Multi-Qubit Gates . 18
3.5 Measurement . 28

4 Quantum Algorithms 33

4.1 Deutsch’s Algorithms . 34
4.2 Shor’s Factoring Algorithm . 41
4.3 Superdense Coding and Teleportation 46
4.4 Quantum Simulation . 49

5 Quantum Error Correction 53

5.1 Entanglement with the Environment 54
5.2 Classical Error Correction . 57
5.3 Generalities on QEC Codes . 59
5.4 Single Qubit Error Correction . 60

6 Bibliography 63

http://arxiv.org/abs/2306.09388v2

1 Introduction

The goal of the present notes is to introduce the theoretical framework a trained
physicist needs to get into quantum computing. Thus, if you are a physicist and
you want to learn the basics of quantum computing, these notes are for you. In a
matter of hours (maybe dedicating an entire weekend), you will be able to learn all
the basics of quantum computer science.
If, as I suppose, you are a physicist, then at some point in your career you took a

proper course on quantum mechanics. Of course, I do not assume that you remember
everything you studied then, however, I do assume that you already went through
all the standard topics as found in the books by Sakurai or Cohen Tannoudji et al.
This will allow me to focus on aspects of quantum computing that I think are new
to you as a physicist. That said, if you think that you forgot most of what you
learned about quantum mechanics, you should not worry. Sincerely speaking, the
use of quantum mechanics in quantum computing is relatively simple. Moreover,
to help you, in general I recall the main physical and mathematical concepts and I
provide explicit calculations so you can easily follow what I am explaining.
Quantum computing is usually described as lying at the intersection of quantum

mechanics, mathematics and computer science. As I said, I assume that you studied
quantum mechanics. Now, concerning mathematics, I am afraid that most physi-
cists are not familiar with the way computer scientists learn the subject. Here I
am not referring, of course, to the mathematics used in quantum mechanics, such
as linear algebra, but to subjects like formal logic, models of computation or com-
plexity theory. Since I am not an expert in the field, I will simply sketch the main
ideas without entering too many details. The interested reader may look at the
appropriate literature. Concerning the most basic notions of computer science, such
as Boolean algebra and circuits, I assume that you are barely familiar with them
(maybe at the level of the first few lines of a Wikipedia article).
The notes are organized as follows: In Section 2, I introduce the quantum systems

relevant to quantum computing and review the mathematical formalism necessary
to understand them. In Section 3, I describe how these quantum systems can be
manipulated and measured. In Section 4, I review some clever ways physicists and
computer scientists have found, at least theoretically, to modify the quantum sys-
tems in order to compute certain tasks more efficiently than classical computational
methods. In Section 5, I explain how the destructive effect of the environment can
be reduced so it does not destroy the quantum nature of the system.
A short comment on the organization of these notes. While Sections 2 and 3 must

be read one after the other, Sections 4 and 5 are rather independent of each other.
So, after reading Sections 2 and 3, read Sections 4 and 5 in the order that suits you.
The Boxes you find within the main text contain additional material that I con-

sider supplementary. Some of them review topics that I assume you already know
and some others expand the main text. My recommendation is that while reading
these notes, you give a quick glimpse at the Boxes to see what they are about and,
depending on your knowledge, read or skip them. If you decide to skip them, you
can always come back to them at a later time.
Concerning the Exercises, I have added them to help you understand and become

familiar with the subject, not to make you smarter. So, try to do them; they are
relatively easy.

2

I wish to thank my physics friends for reading the notes, suggesting many improve-
ments and, crucially, testing that you can indeed learn from them. I hope they will
be helpful to you as well.
I am planning to continue adding new material to these notes; thus, if you have

any feedback (maybe you find a typo, you think that I say something that is not
completely correct, I ignored a subject or its presentation can be improved, or any
other reason you may have), I will sincerely appreciate it if you send me an email
to zapata.oswaldo@gmail.com.

Before moving on to the technical details, let me give a very brief overview of
the history of the subject. This will allow you to see the content of these notes in
perspective.
The first people who thought about the possibility and the necessity of building

quantum computers were Yuri Manin (1980) and Richard Feynman (1982). Feyn-
man’s vision was more elaborate, and he considered the advantage of a quantum com-
puter over a classical one for simulating complex quantum systems such as molecules.
The next important development was the invention by David Deutsch (1985) of the
first quantum algorithm with a computational advantage over classical models of
computation. Almost a decade later, there was the discovery by Peter Schor (1985)
that quantum computers may be more efficient at solving the prime factorization
problem, a scheme widely used to secure the transmission of data. A couple of
years later Lov Grover (1996) created and proved that his quantum algorithm for
finding an element in a large set of data was more efficient than any possible classi-
cal algorithm. The last breakthrough we want to mention is the discovery, also by
Peter Shor (1995), that quantum information can indeed be protected against the
pernicious effects of the environment.
Look at the Bibliography or popular science literature for more on the history of

quantum computing.

2 Quantum Bits

A computer is a physical device that, when supplied with the correct set of data, gen-
erally known as the input, provides another set of data, the output. From this general
definition it follows that despite our familiarity with modern personal computers, a
computer is not necessarily an electronic device. Actually, the first computer con-
ceived and built under the supervision of Charles Babbage in the 19th century was
a purely mechanical device with no electronics in it.
If you think for a moment about this wide-ranging definition, you will quickly

realize that there are infinite different ways we can write (encode) the initial message
we want to communicate to the computer. Ultimately, the way we should encode it
will depend on the language spoken by the device, that is, the system of words and
rules used by the computer to operate. As with human language, the basic elements
of the language of the computer are the words and characters used to construct it.
To make the transition from classical to quantum information processing as smooth

as possible, we will start reviewing the basics of classical information theory. Then,
we will concentrate on the quantum case.

3

mailto:zapata.oswaldo@gmail.com

2.1 Classical Bits

As you certainly already know, the language spoken by ordinary computers is the bi-
nary system. The latter assumes that every piece of information, for example, a num-
ber, a letter or a color, has a unique expression as a finite sequence of zeros and ones.
In the binary system, the number 39 is written 100111. Sometimes, by convention,
the sequence 01000001 is assigned to the letter A and 11111111 00000000 00000000
to the color red.
These sequences of zeros and ones are called bit strings and are somehow equivalent

to the words used by humans. Each individual digit of a binary string is called a
bit (from binary digit) and is the most basic piece of classical information. This is
the analog of the letters used in alphabetic languages. The number of bits in a bit
string is known as the size of the string.
Here we will only be interested in the binary system applied to numbers. If you are

given a positive integer number N in the usual decimal system, the corresponding
binary string will be given by the following formula,

N = 2n−1b1 + 2n−2b2 + . . .+ 20bn ←→ b1 b2 . . . bn . (2.1)

For example,

39 = 25b1 + 24b2 + 23b3 + 22b4 + 21b5 + 20b6 = 251 + 240 + 230 + 221 + 211 + 201 ,

thus,
39←→ 100111 .

Exercise 2.1. Write the bit string equivalent to every natural number from 1 to
20.

Exercise 2.2. Express 56 and 83 in binary notation.

2.2 Single Qubits

The words a quantum computer understands, that is, the carriers of information, are
called quantum bits or qubits, for short. The simplest piece of quantum information
is the single qubit or 1 qubit. It is a two-level quantum system described by a complex
two-dimensional unit state vector

|ψ〉 = a|ϕ1〉+ b|ϕ2〉 , (2.2)

where a and b are complex numbers, a, b ∈ C2, and the vectors |ϕ1〉 and |ϕ2〉 are two
arbitrary orthonormal vectors spanning the Hilbert space H ∼= C

2 where the qubit
|ψ〉 lives. The real number |a|2 is the probability of measuring the system in the
state |ϕ1〉 and |b|2 the probability of measuring it in |ϕ2〉. Of course, since the only
possible outcomes of a measurement are |ϕ1〉 and |ϕ2〉, it follows that |a|2+ |b|2 = 1.
I remind you that the basis vectors |ϕ1〉 and |ϕ2〉 are chosen to be orthonormal, that
is, 〈ϕr|ϕs〉 = δrs, where r, s = 1, 2, because we want the two states to be perfectly
distinguishable. The symbol 〈 | 〉, of course, indicates the inner product on the
Hilbert space H.

Exercise 2.3. How is the inner product on a Hilbert space usually defined?

4

If you are the sort of person that prefers to have a physical picture in mind, you
may think of a qubit as an electron with two possible spins, a spin up | ↑ 〉 and a
spin down | ↓ 〉, a photon with a vertical | ↑ 〉 and a horizontal | → 〉 polarization,
or an atom with two energy level states |E0〉 and |E1〉. We will not use explicitly
any of these physical representations; however, at times it can be handy to have
these pictures in mind. This is somehow analogous to the correspondence made in
classical circuit theory between the binary values 0 and 1 and a zero or non-zero
voltage, respectively, along a piece of wire. In both cases, classical and quantum, a
purely theoretical discussion can be carried out without paying attention to any of
these real implementations. This is the approach we will take in these notes.
Even though you already studied most of the quantum mechanics used in quantum

computing, there are various conventions and original points of view that are worth
following. To begin, we will express the state vector of a single qubit as follows,

|q〉 = α0|0〉+ α1|1〉 . (2.3)

The notation |q〉 is unconventional. In fact, as usual in quantum mechanics, most
authors use |ψ〉. However, we follow the standard convention employed in quantum
computing and denote the orthonormal basis vectors by |0〉 and |1〉 to emphasize
the similitude with the classical binary system. The set {|0〉, |1〉} is known as the
computational basis. If a state vector, say |i〉, can only take the values |0〉 or |1〉,
it is usual to simplify the notation by writing i ∈ {0, 1} or i = 0, 1 instead of
|i〉 ∈ {|0〉, |1〉}. Notice that in our notation, if i, j = 0, 1, then 〈i|j〉 = δij. We will
use Hq

∼= C2 to refer to the Hilbert space of a single qubit.
Another useful set of orthonormal vectors in the Hilbert space of a single qubit
Hq is the so called Hadamard basis {|+〉, |−〉}. The latter is given in terms of the
computational basis vectors by

|+〉 = 1√
2
|0〉+ 1√

2
|1〉 , |−〉 = 1√

2
|0〉 − 1√

2
|1〉 . (2.4)

The converse relations are

|0〉 = 1√
2
|+〉+ 1√

2
|−〉 , |1〉 = 1√

2
|+〉 − 1√

2
|−〉 . (2.5)

The state vector |q〉 of a single qubit can then be rewritten as |q〉H = α+|+〉+α−|−〉,
where

α+ =
α0 + α1√

2
, α− =

α0 − α1√
2

. (2.6)

According to definition (2.3), the state vector of a single qubit is a function of the
two complex numbers α0 and α1. That is, we can write more explicitly

|q(α0, α1)〉 = α0|0〉+ α1|1〉 . (2.7)

Now, since two complex numbers are equivalent to four real numbers and the nor-
malization condition imposes that |α0|2 + |α1|2 = 1, these four numbers reduce to
three. Additionally, since two state vectors that differ by a global phase, in fact
represent the same physical system, the three real numbers finally reduce to two.
The new variables, that we denote θ and φ, with θ ∈ [0, π] and φ ∈ [0, 2π), can be
chosen so that

|α0| = cos(θ/2) , |α1| = sin(θ/2) . (2.8)

Note that |α0|2 + |α1|2 is still equal to 1.

5

Exercise 2.4. Complete the missing steps.

The general expression of the single-qubit state vector in these new variables is

|q(θ, φ)〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉 . (2.9)

In particular,
|q(0, φ)〉 = |0〉 , |q(π, φ)〉 = |1〉 . (2.10)

We also have,

|q(π/2, 0)〉 = 1√
2
|0〉+ 1√

2
|1〉 = |+〉 , (2.11)

and

|q(π/2, π)〉 = 1√
2
|0〉 − 1√

2
|1〉 = |−〉 . (2.12)

This parametrization of the state vector of a single qubit has a useful visual repre-
sentation. Suppose that the variables θ and φ are the usual spherical coordinates.
Then, the state vector of a qubit will be represented by a point — or arrow — on
the unit sphere. For example, the north pole corresponds to the basis state vector
|0〉 and the south pole to |1〉. This unit sphere is called the Bloch sphere.

y

x

z
|0〉

|1〉

|q〉
θ

φ

Fig. 1. The Bloch sphere.

Exercise 2.5. What is the position of the Hadamard basis vectors |+〉 and |−〉 in
the Bloch sphere?

Exercise 2.6. Show that orthogonal states are anti-parallel in the Bloch sphere.

2.3 Multiple Qubits

If a single qubit is a quantum system whose state vector lives in a two-dimensional
complex Hilbert space, |q〉 = |q1〉 ∈ Hq1

∼= C2, a 2 qubit is a quantum system whose
state vector lives in a Hilbert space which is the tensor product of the Hilbert spaces
of two single qubits, |q2〉 ∈ Hq2 = Hq1 ⊗Hq′

1

∼= C22 .
In order to have a clean notation for higher qubits, we will rewrite the state vector

of a single qubit as follows,

|q1〉 = α0|0〉+ α1|1〉 =
∑

i=0,1

αi|i〉 . (2.13)

6

Following the same notation, the state vector of a 2 qubit is simply

|q2〉 = α00|0 0〉+ α01|0 1〉+ α10|1 0〉+ α11|1 1〉 =
∑

i,j

αij |ij〉 , (2.14)

where i, j = 0, 1. From now on, to avoid cluttering the formulas, we will assume
that — unless otherwise indicated — the indices i, j, k under the summation symbol
take the values 0 and 1. By convention, the first element in the ket |i j〉 represents
a computational basis vector of Hq1 and the second element a basis vector of Hq′

1
.

Thus, 〈i j|k l〉 = 〈i|k〉〈j|l〉 = δikδjl. The mutually orthonormal states |00〉, |01〉, |10〉
and |11〉 form the computational basis of Hq2 .

Exercise 2.7. Do you remember how the inner product on Hq2 is given in terms of
the inner products on the individual Hilbert spaces Hq1 and Hq′

1
?

Note: If you had problems understanding the beginning of this section, I recom-
mend you to read the following Box. It summarizes the main mathematical concepts
and conventions we will use to describe multiple qubits. If you understood every-
thing, then you can confidently skip it.

Box 2.1. Tensor product spaces.

A 2 qubit, simply put, is the composite system of two single qubits. Here we
must remember that, since the single qubits can interact between them, the
complete description of the whole 2 qubit system may contain information
that is not available at the level of the individual qubits.
The Hilbert space Hq2 of the composite system is given by the tensor product

of the two individual Hilbert spaces,

Hq2 = Hq ⊗Hq′ . (2.15)

This means the following: given the single qubits |q〉, |q̃〉 ∈ Hq and |q′〉, |q̃′〉 ∈
Hq′, the tensor product of two vectors is a map

⊗ : Hq ⊗Hq′ →Hq ⊗Hq′ , (2.16)

which satisfies

c(|q〉 ⊗ |q′〉) = (c|q〉)⊗ |q′〉 = |q〉 ⊗ (c|q′〉) , (2.17)

for every complex constant c, and

|q〉 ⊗ (|q′〉+ |q̃′〉) = |q〉 ⊗ |q′〉+ |q〉 ⊗ |q̃′〉 , (2.18)

(|q〉+ |q̃〉)⊗ (|q′〉) = |q〉 ⊗ |q′〉+ |q̃〉 ⊗ |q′〉 . (2.19)

We can use this definition of the tensor product between vectors to define the
tensor product between entire Hilbert spaces.
If {|0〉, |1〉} is a basis for Hq and {|0′〉, |1′〉}, is a basis for Hq′, the tensor

product of these basis vectors, that is, |0〉 ⊗ |0′〉, |0〉 ⊗ |1′〉, |1〉 ⊗ |0′〉 and
|1〉 ⊗ |1′〉 are basis vectors for Hq2 = Hq ⊗Hq′ . In other words, every element
|q2〉 in Hq2 has a unique expression of the form

|q2〉 =
∑

i,j′

αij′|i〉 ⊗ |j′〉 , (2.20)

7

where the coefficients αij′ are complex numbers. Often, to lighten the notation,
one drops the symbol ⊗ between the vectors. Additionally, one simply writes
|j〉 instead of |j′〉 because it is clear that the second basis vector is in Hq′ .
Thus,

Hq2 ∋ |q2〉 =
∑

i,j

αij|i〉|j〉 ∈ Hq ⊗Hq′ . (2.21)

A further simplification is to write |i j〉 instead of |i〉|j〉:

|q2〉 =
∑

i,j

αij|i j〉 . (2.22)

The inner product on the Hilbert space Hq2 is related to the inner products
on Hq and Hq′ by the following formula,

〈q2|q′2〉 =
(

∑

i,j

αij |i j〉,
∑

k,l

α′
kl|k l〉

)

=
∑

i,j,k,l

α∗
ijα

′
kl〈i j|k l〉

=
∑

i,j,k,l

α∗
ijα

′
kl〈i|k〉〈j|l〉 =

∑

i,j

α∗
ijα

′
ij . (2.23)

Exercise 2.8. How would you define the tensor product between n single-
qubit Hilbert spaces?

Remember that composite quantum systems, such as 2 qubits, can be entangled,
namely, can be in a physical state whose corresponding vector cannot be written
as the tensor product of single qubits. In other words, an entangled state is not
a product state. What we mean by this is the following: if we multiply two single
qubits,

|q〉|q′〉 =
(

α0|0〉+ α1|1〉
)(

α0′ |0′〉+ α1′ |1′〉
)

= α0α
′
0|0 0〉+ α0α

′
1|0 1〉+ α1α

′
0|1 0〉+ α1α

′
1|1 1〉

=
∑

i,j

αiα
′
j |i j〉 , (2.24)

the entangled states in Hq2 are those for which αij 6= αiα
′
j.

Entangled states are a purely quantum phenomenon. They generally result from
the interaction of two or more quantum systems.

Exercise 2.9. Convince yourself that 1/
√
2(|0 0〉+ |1 1〉) is an entangled state.

For 3 qubits, the definition is similar: |q3〉 ∈ Hq3 = Hq′
1
⊗ Hq′′

1
⊗ Hq′′′

1

∼= C23 . In
the computational basis {|i j k〉} of Hq3 ,

|q3〉 =
∑

i,j,k

αijk|i j k〉 . (2.25)

Exercise 2.10. What condition is satisfied by the entangled states in Hq3?

Exercise 2.11. Does the 3-qubit state vector 1/
√
2(|0 0 0〉+ |1 1 1〉), known as the

GHZ state, represents an entangled system?

8

The generalization to n qubits is straightforward. A multiple qubit or n qubit, for
n ≥ 2, is a quantum system whose state vector |qn〉 ∈ Hqn = Hq′

1
⊗ . . .⊗Hq′n

1

∼= C
2n .

We will often use the notation |Q〉 = |qn〉 and HQ = Hqn. In the computational
basis {|i1 . . . in〉} of HQ, the multiple qubit state vector |Q〉 is given by the linear
combination

|Q〉 =
∑

i1,...,in

αi1...in|i1 . . . in〉 , (2.26)

where the coefficients αi1...in are complex numbers.

Exercise 2.12. What is the condition satisfied by the entangled states in HQ?

To simplify the notation further, usually the bit string i1 . . . in appearing in the
state vector |i1 . . . in〉 is expressed in decimal notation using (2.1),

|Q〉 =
2n−1
∑

x=0

αx|x〉 . (2.27)

For example, a 2 qubit can alternatively be written in binary or decimal notation

|q2〉 = α00|0 0〉+ α01|0 1〉+ α10|1 0〉+ α11|1 1〉

= α0|0〉+ α1|1〉+ α2|2〉+ α3|3〉 . (2.28)

Even though the first two terms in the last line look exactly the same as the definition
(2.3) of a single qubit state vector, there is no risk of confusion because the context
will always clearly indicate the one we will be dealing with.

3 Quantum Circuits

Before we start building a computer, we need to decide in advance what sort of tasks
it will perform and find the most efficient way of achieving them. Later on we will
have time to come back to the concept of efficiency in computer science. However,
let us give you an intuitive idea. Suppose we have to automatically generate and
tabulate the values of a given polynomial function between two real numbers. To
do this, we can use Babbage’s “Difference Engine,” a heavy, slow and expensive
mechanical device. In principle, there is nothing wrong with it. However, I think we
all agree that today this is not the most efficient way of performing our tasks. That
is, it is not enough to come up with clever theoretical ideas; these ideas must be
transformable into practical devices that can process information efficiently. This
interplay between theoretical and practical aspects is key in computer science. It was
the invention of the transistor in 1947 that consolidated the classical circuit model
of computation and gave rise to modern computers. We start this section with a
brief overview of digital circuits to better understand how quantum computing relies
on, but also goes beyond this classical model.

3.1 Classical Circuit Gates

As we said, an ordinary digital computer understands the binary language of zeros
and ones. We provide our computer with a string of zeros and ones (the input), it

9

processes them and at the end it delivers a new string of zeros and ones (the output).
This process, which can be mechanical, electric, or of any other physical nature, is
in general expressed mathematically by a function f from the space of bit strings of
size l to the space of bit strings of size m, f : {0, 1}l → {0, 1}m. These functions are
called(vector-valued) Boolean functions. Here we are interested in these functions,
that is, in the way the device processes information.
Computer science is a subject that, at least as we approach it here, is at its core

in part theoretical and in part practical. Let us say we have a Boolean function
f : {0, 1}l → {0, 1}m and we want to build a device that performs the same operation
as f . How should we proceed? Theoretical computer scientists have arrived at the
conclusion that any binary function f , no matter how difficult it is, can always
be reconstructed by using a combination of functions that are actually easier to
materialize in the real world. These more elementary functions are called elementary
or basic logic gates. This is the essence of the classical circuit model of computation.
The NOT gate is one of these classical basic functions,

NOT: {0, 1} → {0, 1} , b 7→ NOT(b) = b̄ . (3.1)

The bar over the letter b denotes the logic negation of the bit b. In simple words,
if the input is 0, then the output is 1, and vice versa. We can also represent the
action of the NOT gate on a bit as follows,

0
NOT7−−−−→ 1 , 1

NOT7−−−−→ 0 . (3.2)

The next basic gate is the OR gate,

OR: {0, 1}2 → {0, 1} , b1b2 7→ OR(b1b2) , (3.3)

given explicitly by,

0 0
OR7−−−→ 0 , 0 1

OR7−−−→ 1 , 1 0
OR7−−−→ 1 , 1 1

OR7−−−→ 1 . (3.4)

Note that, in contrast to the NOT gate, the input of an OR gate is a string of size
2. So, we call it a 2-bit gate. The last basic gate on our list is the AND gate,

AND: {0, 1}2 → {0, 1} , b1b2 7→ AND(b1b2) , (3.5)

which transforms

0 0
AND7−−−−→ 0 , 0 1

AND7−−−−→ 0 , 1 0
AND7−−−−→ 0 , 1 1

AND7−−−−→ 1 . (3.6)

The result we referred above establishes that any Boolean function f : {0, 1}l →
{0, 1}m can be expressed as a composition of these elementary gates. It is then said
that the gates NOT, OR and AND form a universal set of (classical) (logic) gates.
Just as every component of an electric circuit has a visual representation, the three

electronic gates just mentioned have also a corresponding circuit diagram,

NOT OR AND

Fig. 2. Three classical basic electronic gates.

10

By convention, the inputs enter from the left of the gate and the outputs exist from
the right. The double lines represent the wires through which the data, namely, the
bit strings, flow to go from one gate to the next. A classical circuit, which, as we
said, can always be made using only the NOT, OR and AND gates, will consequently
have an associated visual representation, in general a convoluted circuit diagram,
showing every single element necessary to build it and the relative position between
them.

3.2 Single-Qubit Gates

As well as every Boolean function can be thought of as a concatenation of elementary
logic gates, we will see that any unitary transformation on a qubit can be decomposed
into a sequence of elementary quantum gates.
As you know, according to quantum mechanics, the evolution of a quantum system

is given by the action of a unitary operator on the state vector that describes the
system at some moment in time. That is, if our quantum system is an n qubit,

it will evolve from its initial state |Q0〉 to its final state |Qf 〉 according to |Q0〉 U7−→
|Qf〉 = U |Q0〉. In quantum computing, unitary transformations acting on qubit
state vectors, especially when the number of qubits is small, are also called (quantum
logic) gates or unitaries. In this subsection we will only deal with unitaries on single
qubits.

|q〉 U U |q〉

Fig. 3. Circuit diagram of a single-qubit gate.

As for classical circuits, the qubits move from left to right. However, notice that we
use single lines to represent the quantum communication channels (to distinguish
them from the double lines we used above for classical wires).

Exercise 3.1. Why quantum transformations must be unitary, U−1 = U †?

Because the Hilbert space of a single qubit is a 2-dimensional vector space, it is
usual to express the computational basis vectors in column vector notation,

|0〉 =
[

1
0

]

, |1〉 =
[

0
1

]

. (3.7)

Exercise 3.2. Show that the matrices assigned to the computational basis vectors
are indeed consistent with the orthonormality condition we imposed on them.

With this choice, the state vector of the single qubit (2.3) has the column vector
form

|q〉 = α0

[

1
0

]

+ α1

[

0
1

]

=

[

α0

α1

]

. (3.8)

Correspondingly, its evolution will be determined by a single-qubit gate represented
by a 2× 2 matrix

U =

[

U00 U01

U10 U11

]

. (3.9)

11

Then, when the single qubit |q〉 enters the gate U , on the other side of the gate
exists a state

U |q〉 =
[

U00α0 + U01α1

U10α0 + U11α1

]

. (3.10)

Exercise 3.3. Show that in index notation

U |0〉 =
∑

i

Ui0|i〉 , U |1〉 =
∑

i

Ui1|i〉 , (3.11)

and thus, more generally,

U |q〉 =
∑

i,j

αjUij |i〉 . (3.12)

If we are not given the explicit matrix representation of the single-qubit gate as in
(3.9), but only its action on the computational basis vectors, the single-qubit gate
is abstractly given by the ket-bra expression

U =
∑

i,j

Uij |i〉〈j| . (3.13)

From here, we can find the matrix by using the following formula:

U =

[

〈0|U |0〉 〈0|U |1〉
〈1|U |0〉 〈1|U |1〉

]

. (3.14)

That is, the elements of a 2 × 2 matrix associated to a single-qubit gate are given
by

Uij = 〈i|U |j〉 . (3.15)

If a single qubit enters two gates, first U1 and then U2, quantum mechanics tells
us that the outgoing qubit will be U2(U1|q〉).

|q〉 U1 U2 U2(U1 |q〉)

Fig. 4. Two consecutive single-qubit gates.

Exercise 3.4. Show that

U2U1|q〉 =
∑

i,j,k

αjU2,ikU1,kj|i〉 , (3.16)

where U1 and U2 are two arbitrary single-qubit gates. Generalize this formula to N
consecutive gates.

A set of unitary transformations that play a key role in quantum computation
and communication are the Pauli matrices (the same Pauli matrices you certainly
encountered when you studied the spin of the electron):

σX = X =

[

0 1
1 0

]

, σY = Y =

[

0 −i
i 0

]

, σZ = Z =

[

1 0
0 −1

]

. (3.17)

Most of the time we will refer to them as the X, Y, Z gates because this is how they
are actually called in quantum computing. However, as we will see, the σ notation
is sometimes useful.
Among the many properties of the Pauli matrices, I start by reminding you they are
Hermitian, σ†

a = σa. In our notation a = X, Y, Z. From the physical point of view
this is important because it is telling us that the Pauli matrices are observables.

12

Exercise 3.5. Show that every Pauli matrix σa is its own inverse, that is, (σa)
2 = I,

where I is the identity matrix. Verify that, however, the product of two different
Pauli matrices satisfy σaσb = −σbσa.

Exercise 3.6. Prove that any complex 2 × 2 matrix can be uniquely written as a
linear combination of the Pauli matrices and the identity.

If we apply the Pauli matrices on the computational basis vectors, we get

X|0〉 =
[

0 1
1 0

] [

1
0

]

=

[

0
1

]

= |1〉 , X|1〉 =
[

0 1
1 0

] [

0
1

]

=

[

1
0

]

= |0〉 ,

Y |0〉 =
[

0 −i
i 0

] [

1
0

]

=

[

0
i

]

= i|1〉 , Y |1〉 =
[

0 −i
i 0

] [

0
1

]

=

[

−i
0

]

= −i|0〉 ,

Z|0〉 =
[

1 0
0 −1

] [

1
0

]

=

[

1
0

]

= |0〉 , Z|1〉 =
[

1 0
0 −1

] [

0
1

]

=

[

0
−1

]

= −|1〉 .

This set of relations established by the Pauli matrices between the computational
basis vectors, allow us to define the abstract opetators

X|0〉 = |1〉 , X|1〉 = |0〉 , (3.18)

Y |0〉 = i|1〉 , Y |1〉 = −i|0〉 , (3.19)

Z|0〉 = |0〉 , Z|1〉 = −|1〉 . (3.20)

Exercise 3.7. Use the formula (3.14) to check that these operators indeed have the
Pauli matrices as representations.

Note that the Pauli operator X flips the computational basis vectors, X|i〉 = |̄i〉 =
|1− i〉. So, its action is similar to the classical NOT gate, NOT(b) = b̄ = 1− b. This
explains why in quantum computing the X operator is called the bit flit gate and is
usually denoted NOT.

Exercise 3.8. Compute X, Y, Z on |+〉 and |−〉. Interpret your results.

Exercise 3.9. What is the geometric interpretation of the action of the Pauli ma-
trices on vectors in the Bloch sphere 1?

In ket-bra notation the Pauli operator X takes the following form,

X = |1〉〈0|+ |0〉〈1| . (3.21)

Or, in terms of the Hadamard basis vectors,

X = |+〉〈+|+ |−〉〈−| . (3.22)

Exercise 3.10. Find the ket-bra expressions for Y and Z.

Exercise 3.11. Using the column vector representation of the computational basis
vectors |0〉 and |1〉, show that, in fact, the ket-bra expressions above reproduce the
Pauli matrices.

13

Being Hermitian, the Pauli matrices can be used to define the following unitary
operators,

Rx(α) = e−iXα/2 , Ry(β) = e−iY β/2 , Rz(γ) = e−iZγ/2 . (3.23)

where α, β, γ ∈ [0, 2π). They can be written more compactly as

Ra(θa) = e−iσaθa/2 . (3.24)

The operator Ra(θa) on a single qubit (2.9) acts as a rotation of θa radians about
the a axis. We can rewrite them using trigonometric functions,

Ra(θa) = cos(θa/2)I − i sin(θa/2)σa , (3.25)

Exercise 3.12. Prove the previous identity.

Exercise 3.13. Suppose that n̂ = nx̂ı + ny ̂ + nzk̂ is a unit normal vector on the

Bloch sphere and σ = σx̂ı + σy ̂ + σzk̂. Show that a rotation of an angle θn̂ about
the axis defined by n̂ is given by

Rn̂(θn̂) = e−in̂·σθn̂/2 = cos(θn̂/2)I − i sin(θn̂/2)n̂ · σ . (3.26)

Another single-qubit gate which is extensively used in quantum computing is the
Hadamard gate, defined by its action on the computational basis vectors as follows

H|0〉 = 1√
2
|0〉+ 1√

2
|1〉 , H|1〉 = 1√

2
|0〉 − 1√

2
|1〉 , (3.27)

that is,
H|0〉 = |+〉 , H|1〉 = |−〉 . (3.28)

Thus, if a single qubit enters a Hadamard gate, the outgoing state will be

H|q〉 = H(α0|0〉+ α1|1〉) = α0H|0〉+ α1H|1〉 = α0|+〉+ α1|−〉 . (3.29)

The Hadamard gate, then, takes a state vector in the computational basis and shift
it to the Hadamard basis. The converse is also true because

H|+〉 = 1√
2
H|0〉+ 1√

2
H|1〉 = 1√

2
|+〉+ 1√

2
|−〉 = |0〉 , (3.30)

H|−〉 = 1√
2
H|0〉 − 1√

2
H|1〉 = 1√

2
|+〉 − 1√

2
|−〉 = |1〉 , (3.31)

so,

H|q〉H = H(α+|+〉+ α−|−〉) = α+H|+〉+ α−H|−〉 = α+|0〉+ α−|1〉 . (3.32)

Exercise 3.14. What is the ket-bra expression of the Hadamard gate?

Above we have chosen to introduce the Hadamard gate in terms of its abstract
action on the computational basis vectors, however, we could as well have chosen
the matrix viewpoint. As you can easily check (do it!), in the computational basis
the Hadamard gate has the following matrix representation,

H =
1√
2

[

1 1
1 −1

]

. (3.33)

14

Exercise 3.15. Compute H2. How do you interpret this result?

Exercise 3.16. The Pauli and Hadamard gates satisfy the relation σa = ±HσbH .
Find these relations for all the Pauli gates. MatricesM , such as the Hadamard gate,
that satisfy σa = ±MσbM

†, are called Clifford gates. Show that the Pauli gates are
Clifford gates themselves.

So far we have seen the Pauli matrices, rotations and the Hadamard gate. Let us
introduce a couple of other useful single-qubit gates.
We know that in quantum mechanics two state vectors that differ by a global

phase, actually represent the same quantum system. In the case of a single qubit,
we can write this as |q〉 ∼ eiφ|q〉. However, if we add a relative phase between the
components of a qubit, the two state vectors describe different quantum systems,
α0|0〉+α1|1〉 ≁ α0|0〉+eiφα1|1〉. We can add this relative phase factor eiφ by letting
our qubit enter the following gate,

P (φ)|0〉 = |0〉 , P (φ)|1〉 = eiφ|1〉 ; (3.34)

or, in matrix form,

P (φ) =

[

1 0
0 eiφ

]

. (3.35)

This unitary is known as the relative phase gate. A special case occurs when φ = π/2,

S|0〉 = |0〉 , S|1〉 = eiπ/2|1〉 = i|1〉 . (3.36)

This is the S gate. Another useful case is when φ = π/4,

T |0〉 = |0〉 , T |1〉 = eiπ/4|1〉 = 1√
2
(1 + i)|1〉 . (3.37)

No surprise, this is called the T gate, but sometimes it is also called the π/8 gate.
In summary, P (φ = π/2) = S and P (φ = π/4) = T .

Exercise 3.17. Prove that the S gate is a Clifford gate.

Exercise 3.18. Do you see why the Z gate is also known as the phase flip gate?

Exercise 3.19. Why do you think the gate R = HSH is often called the
√
NOT

gate?

Exercise 3.20. Compute Pm(φ) for m = 2, 3, 4, Consider then the cases φ =
π/2 and φ = π/4. How are these Pm’s related to the other unitaries?

Exercise 3.21. In general, a relative phase gate is not Hermitian. What condition
must a relative phase gate satisfy in order to be Hermitian?

3.3 Multiple Single-Qubit Gates

Before explaining how a general unitary transformation acts on an n qubit, let us
first consider the simpler case of a gate that acts independently on the n single
qubits of an n-qubit product state,

U |qn〉 = U1 ⊗ . . .⊗ Un

(

|q′〉 . . . |q′n〉
)

= U1|q′〉 . . . Un|q′n〉 . (3.38)

15

As you see, these special transformations do not produce any entanglement between
the single qubits of the incoming product state.

|q′〉 U1 |q′〉
|q′′〉 U2 |q′′〉

...
...

|q′n〉 Un |q′n〉

U

Fig. 5. A non-entangling n-qubit gate.

To be more precise, consider the action of n independent Hadamard gates on the
individual qubits of an n-product state,

H ⊗ . . .⊗H
(

|q′〉 . . . |q′n〉
)

= H|q′〉 . . .H|q′n〉 . (3.39)

Let us start considering the easier cases.
For a computational basis vector |i〉 ∈ Hq, a single Hadamard gate acts as follows,

|i〉 H |(−1)i 〉

Fig. 6. The Hadamard gate.

Another useful way to write it is

H|i〉 = 1√
2
|0〉+ 1√

2
(−1)i|1〉 = 1√

2

∑

j

(−1)ij|j〉 . (3.40)

Since eiπ = −1, a third common notation is

H|k〉 = 1√
2
|0〉+ 1√

2
eiπk|1〉 = 1√

2

∑

j

eiπkj|j〉 . (3.41)

Note that in the last equation we used the letter k instead of the usual i to denote
the computational basis vectors. We did this simply to avoid confusion with the
imaginary i.
Thus, for a single qubit,

H|q〉 = H
∑

i

αi|i〉 =
∑

i

αiH|i〉

=
∑

i

αi|(−1)i〉 =
1√
2

∑

i,j

(−1)ijαi|j〉 =
1√
2

∑

k,j

eiπkjαk|j〉 . (3.42)

Exercise 3.22. Use the index expressions above to prove that, as we already know
from Exercise 3.15, H(H|i〉) = |i〉.

Suppose now we have a product state |i1〉|i2〉 ∈ Hq2 and we apply a Hadamard
gate to each of the qubits,

16

|i1〉 H H |i1〉

|i2〉 H H |i2〉

Fig. 7. Two Hadamard gates in parallel.

H|i1〉H|i2〉 =
1√
2

(

|0〉+ 1√
2
(−1)i1 |1〉

)

1√
2

(

|0〉+ 1√
2
(−1)i2 |1〉

)

=
1√
22

(

|00〉+ (−1)i2 |01〉+ (−1)i1 |10〉+ (−1)i1+i2|11〉
)

=
1√
22

∑

j1,j2

(−1)i1j1+i2j2|j1〉|j2〉 . (3.43)

We can rewrite the left hand side of this equation as follows,

H|i1〉H|i2〉 = (H ⊗ 1)(1⊗H)|i1〉|i2〉 = H ⊗H|i1〉|i2〉 = H⊗2|i1 i2〉 . (3.44)

The right hand side can also be written in a more compact and general form by
using the notation |x〉 = |i1 i2〉. Similarly, |y〉 = |j1 j2〉. Putting these contributions
together, we obtain

H⊗2|x〉 = 1√
22

∑

y

(−1)x·y|y〉 . (3.45)

Be aware that here x denotes a binary string and not a decimal number as in
equation (2.27). Moreover, x · y is a sort of dot product, x · y = i1j1 + i2j2, and not
the multiplication of two decimal numbers. Finally, the sum over y simply means

∑

y

=
∑

j1

∑

j2

=
∑

j1,j2

. (3.46)

You can easily generalize (3.45) to n Hadamard gates acting independently on n
single qubits,

H⊗n|x〉 = 1√
2n

∑

y

(−1)x·y|y〉 , (3.47)

where x = i1 . . . in, y = j1 . . . jn and x · y = i1j1 + . . .+ injn.

|x〉 /

n

H⊗n /

n

H⊗n |x〉

Fig. 8. n Hadamard gates in parallel acting on a computational basis vector of HQ.

Exercise 3.23. Explain how the general formula (3.47) is obtained by considering
three qubits, four qubits, etc.

Exercise 3.24. Show that H⊗n(H⊗n|x〉) = |x〉.

17

If we express the state vector of the n qubit as a linear combination

|Q〉 =
∑

x

αx|x〉 , (3.48)

the n Hadamard gates will act according to

H⊗n|Q〉 =
∑

x

αxH
⊗n|x〉 = 1√

2n

∑

x,y

(−1)x·yαx|y〉 . (3.49)

Once again, remember that here, x and y are binary strings.

3.4 Multi-Qubit Gates

So far we have discussed quantum gates that act on single qubits, the natural ques-
tion now is: what about 2-qubit gates, 3-qubit gates, etc? In principle, nothing
prevents us from conceiving quantum gates that act on n qubits. In fact, the math-
ematical generalization is quite straightforward. If |Q〉 is the state vector of an n
qubit, a general n-qubit gate is a unitary transformation U on |Q〉, |Q〉 7→ U |Q〉.
The only restriction on U is that it must be unitary, U−1 = U †.

|Q〉 U U |Q〉

Fig. 9. A unitary transformation acting on an n qubit.

Given that the computational basis vectors of HQ = Hq′ ⊗ . . . ⊗ Hq′n
∼= C2n are

|i1 . . . in〉 = |i1〉 ⊗ . . . ⊗ |in〉, where {|ir〉} = {|0〉, |1〉} is the computational basis
of Hq′r , r = 1, 2, . . . n, every vector |Q〉 =

∑

αi1...in |i1 . . . in〉 in HQ will have the
following column vector representation,

|Q〉 =
∑

i1,...,in

αi1...in

[

δi10
δi11

]

⊗ . . .⊗
[

δin0
δin1

]

, (3.50)

where [δir0 δir1]
T is the matrix representation of |ir〉.

The unitary transformation U will thus have a 2n × 2n matrix representation,

U =





U11 . . . U12n

.
U2n1 . . . U2n2n



 . (3.51)

For example, the computational basis vectors of Hq2 are simply

|0 0〉 =









1
0
0
0









, |0 1〉 =









0
1
0
0









, |1 0〉 =









0
0
1
0









, |1 1〉 =









0
0
0
1









. (3.52)

It follows that every 2-qubit state vector |q2〉 =
∑

αij |i j〉 will be represented by a
column vector

|q2〉 = α00









1
0
0
0









+ α01









0
1
0
0









+ α10









0
0
1
0









+ α11









0
0
0
1









=









α00

α01

α10

α11









, (3.53)

18

and every unitary transformation on |q2〉 will have the general 4× 4 matrix form

U =









U11 U12 U13 U14

U21 U22 U23 U24

U31 U32 U33 U34

U41 U42 U43 U44









, (3.54)

with Urs = U∗
sr.

Exercise 3.25. Can you find a way to rename the subscripts of the matrix elements
Urs of (3.54) so that the product U |q2〉 has a tidy form in index notation?

Box 3.1. Tensor product of operators.

In Box 2.1, we recalled the definition of the tensor product of vectors as well
as of entire Hilbert spaces. Now, we want to review how operators act on the
individual Hilbert spaces of composite systems.
Suppose two single qubits with Hilbert spaces Hq and Hq′ and two operators

acting on them,

A : Hq → Hq , |q〉 7→ A|q〉 ,
B : Hq′ →Hq′ , |q′〉 7→ B|q′〉 .

Let us say we form the 2-qubit system with Hilbert space Hq2 = Hq ⊗ Hq′ .
We can associate to A the operator A⊗ 1: Hq2 →Hq2, such that

A⊗ 1|q2〉 = A⊗ 1
(

∑

i,j

αij |i j〉
)

=
∑

i,j

αij

(

A|i〉
)

⊗ 1|j〉 =
∑

i,j

αij

(

A|i〉
)

|j〉 .

A similar definition applies to the operator B. In general,

A⊗B
(

∑

i,j

αij |i j〉
)

=
∑

i,j

αij

(

A|i〉
)(

B|j〉
)

. (3.55)

Exercise 3.26. Show that a unitary transformation that entangles two single
qubits cannot be expressed as the tensor product of two single-qubit gates.

Exercise 3.27. Generalize everything said above for a Hilbert space that is
the tensor product of n single qubit spaces.

Given two operators A and B and their respective matrix representations, to
the tensor product A⊗ B we associate the matrix

A⊗ B =

[

a11 a12
a21 a22

]

⊗
[

b11 b12
b21 b22

]

=

[

a11B a12B
a21B a22B

]

. (3.56)

The generalization to more than two operators and to higher order matrices
is straightforward.
When there is no risk of confusion, we will drop the tensor product symbol
⊗ and simply write AB for A⊗ B.

Exercise 3.28. Explain the choice (3.52) for the basis vectors of Hq2 .

19

One of the simplest 2n×2n unitary matrix transformations (3.51) is the one formed
by the tensor product of n 2× 2 unitary matrices,

U = U1 ⊗ . . .⊗ Un . (3.57)

This unitary acts on a product state |Q〉 = |q′〉 ⊗ . . .⊗ |q′n〉 as follows,

U |Q〉 = U1 ⊗ . . .⊗ Un

(

|q′〉 ⊗ . . .⊗ |q′n〉
)

= U1

(

|q′〉 . . . Un|q′n〉 . (3.58)

Thus, the unitary (3.57) keeps the quantum state |Q〉 unentangled. For instance, in
the previous subsection we considered U1 = . . . = Un = H .
The advantage of a quantum computer over a classical one, though, is its ability

to create and efficiently keep track of the superposition of all the possible states
available to a quantum system. This includes, of course, entangled states. Thus,
if we want to take full advantage of all the power of quantum mechanics, we need
to introduce quantum gates that create entanglement. It can be proved that —
something we will not do here — a single gate that produces entanglement, in
addition to a complete set of single-qubit gates, is all we need to build any multi-
qubit gate we want. The gate usually chosen is the so-called CNOT gate. We will
first introduce it and then see how it enters into the production of other useful
unitaries.
A quantum controlled gate is a gate that operates on two qubits, one register by

convention called the control qubit and the other the target qubit. While the control
qubit is a single qubit and it remains unchanged when passing through the gate, the
target qubit is in general an n qubit and it gets modified depending on the value of
the control qubit. By definition, for c ∈ {0, 1}, a controlled gate transforms

|c〉|Qt〉 7−→ |c〉U(c)|Qt〉 , (3.59)

where U(c) is a unitary on |Qt〉 which action depends on the value of c.
The controlled-U gate is defined as follows,

CU |0〉|Qt〉 = |0〉|Qt〉 , CU |1〉|Qt〉 = |1〉U |Qt〉 . (3.60)

In ket-bra notation,
CU = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ U . (3.61)

Its circuit diagram is:

|c〉

|Qt〉 U

|ω〉

Fig. 10. The controlled-U gate.

Since there is nothing particular about the basis vector |1〉, we could as well have
used the vector |0〉 to define a controlled gate. The latter is a controlled -V gate,

CV |0〉|Qt〉 = |0〉V |Qt〉 , CV |1〉|Qt〉 = |1〉|Qt〉 . (3.62)

As you can show,
CV = |0〉〈0| ⊗ V + |1〉〈1| ⊗ 1 . (3.63)

20

The gate is commonly illustrated as follows,

|c〉

|Qt〉 V

|ω〉

Fig. 11. The controlled-V gate.

We will almost exclusively deal with controlled-U gates.
Note that we can rewrite the definition of a controlled-U gate as follows,

CU |i〉|Qt〉 = |i〉U i|Qt〉 , (3.64)

where

U i =

{

1 if i = 0
U if i = 1

. (3.65)

In particular, if we write the control qubit as |c〉 =
∑

i ci|i〉 and assume that the
target qubit is a single qubit with state vector |t〉 = ∑

j tj |j〉, the transformation of
a controlled-U gate in index notation takes the general form

CU(|c〉|t〉) =
∑

i,j

citj|i〉U i|j〉 . (3.66)

Exercise 3.29. Prove that

CV (|i〉|t〉) = |i〉V 1−i|t〉 . (3.67)

The matrix representation of a CU gate on single qubits can easily be found:

CU









c0t0
c0t1
c1t0
c1t1









= c0t0









1
0
0
0









+ c0t1









0
1
0
0









+ c1t0









0
0

[

U U
U U

] [

1
0

]









+ c1t1









0
0

[

U U
U U

] [

0
1

]









=









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

















c0t0
c0t1
0
0









+









0 0 0 0
0 0 0 0
0 0 U00 U01

0 0 U10 U11

















0
0
c1t0
c1t1









=

[

I 0
0 U

]









c0t0
c0t1
c1t0
c1t1









.

Thus, we have shown that a controlled-U gate on single qubits has the following
matrix representation,

CU =

[

I 0
0 U

]

. (3.68)

Exercise 3.30. What is the matrix representation of a controlled-V gate?

21

For example, for a controlled -X gate,

CX
(

|c〉|t〉
)

= CX
(

[

c0
c1

]

⊗
[

t0
t1

]

)

=









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

















c0t0
c0t1
c1t0
c1t1









=









c0t0
c0t1
c1t1
c1t0









. (3.69)

If the control qubit is in the basis vector |0〉 = [1 0]T , we have

CX
(

|0〉|t〉
)

=









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









(

[

1
0

]

⊗
[

t0
t1

]

)

=









t0
t1
0
0









=

[

1
0

]

⊗
[

t0
t1

]

= |0〉|t〉 .

As expected, since any controlled-U gate does nothing when the control qubit is in
the state |0〉. If, on the other hand, |c〉 = |1〉 = [0 1]T ,

CX(|1〉|t〉) =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









(

[

0
1

]

⊗
[

t0
t1

]

)

=









0
0
t1
t0









=

[

0
1

]

⊗
[

t1
t0

]

= |1〉X|t〉 .

Exercise 3.31. Show that a controlled -Z gate transforms

|0〉|t〉 CZ7−−−→ |0〉|t〉 , |1〉|t〉 CZ7−−−→ |1〉
∑

j

(−1)jtj |j〉 . (3.70)

What is the matrix corresponding to CZ?

Exercise 3.32. A useful variant of the relative phase gate (3.34) is the Rl gate
defined by

Rl|j〉 = e
2πi

2l
j|j〉 . (3.71)

Write its matrix representation. How would you define a controlled-Rl gate? Write
the corresponding matrix and draw the circuit diagram.

The controlled-NOT or CNOT gate is another instance of controlled-U gate on
single qubits. For i, j ∈ {0, 1},

|i〉|j〉 CNOT7−−−−−→ |i〉|j ⊕ i〉 . (3.72)

The notation i⊕j is the standard way of denoting a binary sum: i⊕j = (i+j)mod2.
For example, 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1 and 1⊕ 1 = 0. For the computational
basis vectors,

|0〉|0〉 CNOT7−−−−−→ |0〉|0⊕ 0〉 = |0〉|0〉 ,
|0〉|1〉 CNOT7−−−−−→ |0〉|1⊕ 0〉 = |0〉|1〉 ,
|1〉|0〉 CNOT7−−−−−→ |1〉|0⊕ 1〉 = |1〉|1〉 ,
|1〉|1〉 CNOT7−−−−−→ |1〉|1⊕ 1〉 = |1〉|0〉 .

22

That is,

|0 0〉 CNOT7−−−−−→ |0 0〉 , |0 1〉 CNOT7−−−−−→ |0 1〉 , |1 0〉 CNOT7−−−−−→ |1 1〉 , |1 1〉 CNOT7−−−−−→ |1 0〉 .
From here, we read the matrix representation of the CNOT gate,

CNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









= CX . (3.73)

We see that the CNOT gate is actually the same as the CX gate. This is consistent
with the fact that the X gate flips the computational basis vectors |0〉 ↔ |1〉 as
well as the classical NOT gate flips the bits 0 ↔ 1. As we said, the CNOT gate is
frequently used to create entanglement and build other unitary transformations.

⊕

X
=

Fig. 12. Circuit identity CNOT=CX .

Exercise 3.33. Show that the CNOT gate is not the tensor product of two single-
qubit gates. What is the physical meaning of this?

Exercise 3.34. If |i〉 is a computational basis state vector, how would you write
the transformed state X|i〉 using the ⊕ symbol?

Another useful example of controlled-U gate is the CSWAP gate. In this case the
unitary U is a 2-qubit gate known as the SWAP gate,

|u〉|b〉 SWAP7−−−−−→ |b〉|u〉 . (3.74)

In components, the SWAP unitary interchanges ui ↔ bi. Its matrix representation
can be obtained noting that

|u〉|b〉 =









u0b0
u0b1
u1b0
u1b1









SWAP7−−−−−→ SWAP









u0b0
u0b1
u1b0
u1b1









=









b0u0
b0u1
b1u0
b1u1









=









u0b0
u1b0
u0b1
u1b1









. (3.75)

The matrix representation of the SWAP gate in the computational basis of Hq2 is
then

SWAP =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









. (3.76)

Graphically the SWAP gate is represented by the following diagram

|u〉 × |b〉

|b〉 × |u〉

Fig. 13. The SWAP gate.

23

Exercise 3.35. Show that the ket-bra expression for the SWAP gate is

SWAP =
∑

k,l

|k l〉〈k l| . (3.77)

Exercise 3.36. It is easy to check that the SWAP gate can be written as

SWAP =
1

2

(

I ⊗ I +X ⊗X + Y ⊗ Y + Z ⊗ Z
)

=
1

2

∑

A

σA ⊗ σA , (3.78)

where A = I,X, Y, Z. What is the physical reason for this?

Exercise 3.37. Below is an illustration of the controlled-SWAP gate (CSWAP).
What is the outgoing state |ω〉?

|c〉 |c〉

|t1〉 |t1〉 ×

|t2〉 |t2〉 ×

= |ω〉
SWAP

Fig. 14. The controlled-SWAP gate.

Now that we know how to create entangled states from product states using the
CNOT gate, we would like to known how to construct other multi-qubit gates using
the CNOT gate.
Since quantum gates are identified with unitary transformations, then, according to

the mathematical formalism of quantum mechanics, any gate will be the composition
of certain unitary transformations (each of them, of course, corresponding to a
particular gate),

|Q〉 7→ U1|Q〉 7→ U2(U1|Q〉) 7→ · · · (3.79)

In terms of matrices, this means that any quantum gate will be equivalent to a
product of matrices, each matrix corresponding to a gate in the circuit. To illustrate
how this works, consider the following circuit,

|c〉

|t〉 U1 U2

|ω〉

Fig. 15. Two consecutive CU gates.

Exercise 3.38. Verify that each step below is correct:

24

|c〉|t〉 = c0t0|0〉|0〉+ c0t1|0〉|1〉+ c1t0|1〉|0〉+ c1t1|1〉|1〉
CU17−−−→ c0t0|0〉|0〉+ c0t1|0〉|1〉+ c1t0|1〉U1|0〉+ c1t1|1〉U1|1〉
CU27−−−→ c0t0|0〉|0〉+ c0t1|0〉|1〉

+ c1t0|1〉
(

U1,00U2|0〉+ U1,10U2|1〉
)

+ c1t1|1〉
(

U1,01U2|0〉+ U1,11U2|1〉
)

= c0t0|0〉|0〉+ c0t1|0〉|1〉

+
[

c1t0
(

U1,00U2,00 + U1,10U2,01

)

+ c1t1
(

U1,01U2,00 + U1,11U2,01

)]

|1〉|0〉

+
[

c1t0
(

U1,00U2,10 + U1,10U2,11

)

+ c1t1
(

U1,01U2,10 + U1,11U2,11

)]

|1〉|1〉 ,

which is the product CU2CU1|c〉|t〉.

Exercise 3.39. Compute the evolution of the incoming qubits as they pass through
the following gates,

|c〉 U2 |c〉 U2

|t〉 U1 |t〉 U1 U3

|ω〉 |ω〉

Fig. 16

Exercise 3.40. Show the equivalence of the following circuits,

Z

⊕

X H H

==

Fig. 17. Circuit identity.

Exercise 3.41. What is the output state |ω〉 of the circuit below? What if the CV
gate is followed by the CU gate?

|q〉

|Q〉 U V

|ω〉

Fig. 18. CU gate followed by a CV gate.

Exercise 3.42. Compare the outgoing states of the following circuits . Then, con-
sider the special case |ti〉 = |0〉 for all i = 1, . . . , N .

25

|c〉 |c〉

|t1〉
⊕

|t1〉
⊕

|t2〉
⊕

|t2〉
⊕

...
|tN−1〉

⊕

|tN〉
⊕ |tN〉

⊕

...

|ω〉 |ω〉

Fig. 19. Circuits (a) and (b).

Exercise 3.43. What sequence of gates undo the action of the gates in Figure
19(b)?

Exercise 3.44. What is the outgoing state of the circuit below? Then, consider
the case U = Rz(θ).

|c1〉

|c2〉

|cN〉

|t〉
⊕ ⊕ ⊕

U
⊕ ⊕ ⊕

...
... |ω〉

Fig. 20

If, as we said, any multi-qubit gate can be constructed using the CNOT gate and
a set of universal single-qubit gates, we should be able to prove that the SWAP and
CSWAP gates are concatenations of CNOT gates. The circuit that does it is shown
below:

⊕

×

⊕ ⊕

×
=

Fig. 21. CNOT3 = SWAP.

26

Let us prove that it does exactly what we want:

|c〉|t〉 =
[

c0
c1

]

⊗
[

t0
t1

]

=









c0t0
c0t1
c1t0
c1t1









= c0t0|0〉|0〉+ c0t1|0〉|1〉+ c1t0|1〉|0〉+ c1t1|1〉|1〉
CNOT27−−−−−→ c0t0|0〉|0〉+ c0t1|0〉|1〉+ c1t0|1〉|1〉+ c1t1|1〉|0〉
CNOT17−−−−−→ c0t0|0〉|0〉+ c0t1|1〉|1〉+ c1t0|0〉|1〉+ c1t1|1〉|0〉
CNOT27−−−−−→ c0t0|0〉|0〉+ c0t1|1〉|0〉+ c1t0|0〉|1〉+ c1t1|1〉|1〉

=









c0t0
c1t0
c0t1
c1t1









=

[

t0
t1

]

⊗
[

c0
c1

]

= |t〉|c〉 .

Thus, three consecutive CNOT gates acting as shown in Figure 21 are equiva-
lent to a single SWAP gate. We can symbolically write this identity as SWAP =
CNOT2CNOT1CNOT2. Sometimes this identity is simply written SWAP = CNOT3.

In index notation the proof is as follows,

|c〉|t〉 =
∑

i

ci|i〉
∑

j

tj |j〉 =
∑

i,j

citj |i〉|j〉

CNOT27−−−−−→
∑

i,j

citj |i〉|i⊕ j〉

CNOT17−−−−−→
∑

i,j

citj |i⊕ j ⊕ i〉|i⊕ j〉

CNOT27−−−−−→
∑

i,j

citj |i⊕ j ⊕ i〉|i⊕ j ⊕ i⊕ i⊕ j〉 .

But, since computational basis vectors satisfy |i⊕ i〉 = |0〉, then

|c〉|t〉 CNOT27−−−−−→ CNOT17−−−−−→ CNOT27−−−−−→
∑

i,j

citj |j〉|i〉 =
∑

j

tj |j〉
∑

i

ci|i〉 = |t〉|c〉 .

Exercise 3.45. Prove the circuit identity SWAP = CNOT3 by using the ket-bra
form (3.61) of the controlled-U gates.

Exercise 3.46. Show that the CSWAP gate can be implemented by the following
equivalent sequence of gates:

27

⊕ ⊕ ×
⊕ ×

=

Fig. 22. A sequence of gates equivalent to the CSWAP gate.

In the same spirit, we can construct quantum gates that operate on more than 2
qubits. One such gate is the controlled-controlled NOT gate, most commonly known
as the CCNOT or the Toffoli gate. It is a 3-qubit gate that transforms

|i〉|j〉|k〉 TOFF7−−−−→ |i〉|j〉|k ⊕ ij〉 . (3.80)

If we write the first control qubit as c1 =
∑

i c1,i|i〉, the second control qubit as
c2 =

∑

i c2,j |j〉 and the target qubit as t =
∑

k tk|k〉, the Toffoli gate transforms

|c1〉|c2〉|t〉 =
∑

i,j,k

c1,ic2,jtk|i〉|j〉|k〉 TOFF7−−−−→
∑

i,j,k

c1,ic2,jtk|i〉|j〉|k ⊕ ij〉 . (3.81)

3.5 Measurement

From the beginning of these notes I have assumed that you are familiar with the
crucial role played by the measurement process in quantum mechanics. For example,
in the pages above I took for granted that you knew that for a single qubit |q〉 =
∑

i αi|i〉, the probability of measuring the state |i〉 is |αi|2. Of course, this is simply
because

P (|i〉) = |〈i|q〉|2 =
∣

∣

∣
〈i|

∑

j

αj |j〉
∣

∣

∣

2

=
∣

∣

∣

∑

j

αj〈i|j〉
∣

∣

∣

2

=
∣

∣

∣

∑

j

αjδij

∣

∣

∣

2

= |αi|2 . (3.82)

In terms of the projectors on the computational basis vectors, Pi = |i〉〈i|, the formula
for the probabilities is

P (|i〉) = |〈i|q〉|2 = 〈i|q〉∗〈i|q〉 = 〈q|i〉〈i|q〉 = 〈q|Pi|q〉 . (3.83)

In quantum computing, a measurement in the computational basis of a single qubit
is depicted as follows,

|q〉 |i〉

Fig. 23. A measurement gate.

Exercise 3.47. Show that indeed the Pi’s are projectors, that is, P †
i = Pi and

P 2
i = Pi.

Exercise 3.48. If a single qubit |q〉 enters the sequence of gates HP (φ)H , where
P (φ) was defined in (3.34), what is the probability of measuring |0〉 and |1〉? Con-
sider then the case |q〉 = |0〉. Draw the probabilities for 0 ≤ φ ≤ 2π.

28

Certainly, there is nothing new here for you. What you may not know, though, is
what happens to a 2 qubit when a measurement is performed on only one of the
qubits. Let me recall it very quickly.
Given a 2 qubit in a generic state |q2〉 =

∑

j,k αjk|jk〉, we can, for example, ask
about the probability of finding the first qubit in the computational basis state |i〉.
Because we do nothing to the second qubit, the probability P (|i ·〉) must take into
account the two possibilities of the second qubit, that is,

P (|i ·〉) = P (|i 0〉) + P (|i 1〉) = |〈i 0|q2〉|2 + |〈i 1|q2〉|2

= |αi0|2 + |αi1|2 =
∑

j

|αij|2 . (3.84)

Similarly, the partial measurement of the second qubit comes with probabilities

P (| · k〉) =
∑

i

|αik|2 . (3.85)

Exercise 3.49. If |i〉 is the result of measuring the first qubit, what is the state
vector of the second qubit?

Exercise 3.50. Work explicitly the case of 3 qubits. Explore all possible measure-
ments.

To illustrate some interesting consequences of the measurement process in quantum
computing, let us consider the following examples. But first, since we will need the
controlled-U gate to act on a general target qubit, rather than a single qubit as in
(3.66), let us write it again in index notation,

|i〉|Q〉 CU7−−−→ |i〉U i|Q〉 . (3.86)

That is, if the incoming product state is |q〉|Q〉, we have that

|q〉|Q〉 =
∑

i

αi|i〉|Q〉 CU7−−−→
∑

i

αi|i〉U i|Q〉 . (3.87)

Without risk of confusion, we can also write this as

∑

i

αi|i〉U i|Q〉 =
∑

i

αiU
i|i Q〉 , (3.88)

where it is understood that the U i in the right hand side is 1⊗ U i.
Let us now examine the following circuit,

|q〉 g g−1

|Q〉 U

|ω〉

Fig. 24

In this example, g is an arbitrary gate on the single qubit |q〉 and g−1 is its inverse.
For instance, g can be any of the Pauli unitaries or the Hadamard gate. The gate

29

U , on the other hand, is an arbitrary unitary transformation on the n qubit |Q〉. As
a special case, |Q〉 could be a single qubit.

Following the circuit, we have that

|q Q〉 g7−−→
∑

i,j

gijαi|i Q〉 CU7−−−→
∑

i,j

gijαjU
i|i Q〉 g−1

7−−−→
∑

i,j,k

g∗kigkjαjU
k|i Q〉 . (3.89)

In full form, the output state vector |ω〉 is

|ω〉 =
[

α0(g
∗
00g00 + g∗10g10U) + α1(g

∗
00g01 + g∗10g11U)

]

|0Q〉
+
[

α0(g
∗
01g00 + g∗11g10U) + α1(g

∗
01g01 + g∗11g11U)

]

|1Q〉 . (3.90)

Of course, g∗ij = gji because g is unitary.

Exercise 3.51. Check that the previous formulas are correct by using explicit ma-
trix representations.

Suppose now that g is the Hadamard gate,

|q〉 H H

|Q〉 U

|ω〉

Fig. 25

In this case, the state vector |ω〉 is

|ω〉 = 1

2

[

α0(1 + U) + α1(1− U)
]

|0Q〉+ 1

2

[

α0(1− U) + α1(1 + U)
]

|1Q〉

=
1

2

∑

i

αi

(

1 + (−1)iU
)

|0Q〉+ 1

2

∑

i

αi

(

1− (−1)iU
)

|1Q〉 . (3.91)

Once again, recall that we are using the shorthand notation AB for the tensor prod-
uct A⊗ B. Thus, by (1± U) we really mean (1⊗ 1± 1⊗ U).

The probabilities of measuring the upper qubit in |0〉 and |1〉 are

P (|0 ·〉) = 1

4

∣

∣

∣

∑

i

αi

(

1 + (−1)iU
)

∣

∣

∣

2

, P (|1 ·〉) = 1

4

∣

∣

∣

∑

i

αi

(

1− (−1)iU
)

∣

∣

∣

2

.

If you prefer, we can write them more compactly as

P (|i ·〉) = 1

4

∣

∣

∣

∑

j

αj

(

1 + (−1)i+jU
)

∣

∣

∣

2

. (3.92)

Exercise 3.52. Prove that the sum of these two probabilities is equal to 1.

30

In particular, if the control qubit |q〉 in (3.91) is prepared in the state |0〉, we get

|ω〉 = 1

2
(1 + U)|0Q〉+ 1

2
(1− U)|1Q〉 . (3.93)

Exercise 3.53. Show that

P (|0 ·〉) = 1

2
(1 + Re〈Q|U |Q〉) . (3.94)

Find P (|1 ·〉) and show that the sum of the two probabilities is equal to 1.

A similar set-up is at the core of the so called quantum phase estimation algorithm.
Suppose that the unitary transformation U acts as U |Q〉 = eiθ|Q〉. In other words,
assume that the state vector |Q〉 of the qubit is an eigenvector of the unitary U . In
this case, the outgoing state (3.93) becomes

|ω〉 = 1

2
(1 + eiθ)|0Q〉+ 1

2
(1− eiθ)|1Q〉 . (3.95)

As before, we are interested in the probabilities

P (|0 ·〉) = 1

4
(1 + eiθ)(1 + e−iθ) = cos2(θ/2) , (3.96)

P (|1 ·〉) = 1

4
(1− eiθ)(1− e−iθ) = sin2(θ/2) . (3.97)

As you see, there is a closed relationship between these probabilities and the phase
angle. For example, if the phase angle is greater that 45◦, the probability of mea-
suring the state |1〉 is greater than measuring |0〉.

Exercise 3.54. If U |Q〉 = eiθ|Q〉, what is the outgoing state in the following dia-
gram? After this, do it for 3 and — if you can — generalize to an arbitrary number
of incoming measuring qubits |0〉.

|0〉 H H

|0〉 H H

|Q〉 U2 U

|ω〉

Fig. 26

Another interesting case worth considering is when in the circuit shown in Figure
25, the control qubit is in the state |q〉 = (|0〉 − i|1〉)/

√
2, for which,

|ω〉 = (1− i)
2
√
2

(1 + iU)|0Q〉+ (1− i)
2
√
2

(1− iU)|1Q〉 . (3.98)

Exercise 3.55. Draw the circuit diagram that implements the previous transfor-
mation. Find the probability P (|0 ·〉) and P (|1 ·〉).

31

Suppose now that the incoming qubit |Q〉 in Figure 25 is a 2-qubit unentangled
system, that is, suppose |Q〉 = |t1〉|t2〉, and let U be a SWAP gate. The circuit
diagram becomes

|0〉 H H

|t1〉 ×

|t2〉 ×

Fig. 27

The analysis of the circuit gives

|0〉|t1〉|t2〉 Hc7−−−−→ 1√
2

(

|0〉+ |1〉
)

|t1 t2〉

SWAP7−−−→ 1√
2
|0〉|t1 t2〉+

1√
2
|1〉|t2 t1〉

Hc7−−−−→ 1

2

(

|0〉+ |1〉
)

|t1 t2〉+
1

2

(

|0〉 − |1〉
)

|t2 t1〉

=
1

2
|0〉

(

|t1 t2〉+ |t2 t1〉
)

+
1

2
|1〉

(

|t1 t2〉 − |t2 t1〉
)

= |ω〉 .

If we measure the first qubit and leave alone the second and third qubits, the prob-
abilities are

P (|i · ·〉) = P
(1

2

(

|i t1 t2〉+ |i t2 t1〉
)

)

. (3.99)

The 1/2 in the right hand side is the normalization factor.

Exercise 3.56. Prove that, in fact, in the Hilbert space of outgoing states

1⊗ 1 = 1⊗ |t1 t2〉〈t1 t2|+ 1⊗ |t2 t1〉〈t2 t1| . (3.100)

The explicit calculation of the probabilities (3.99) is as follows,

P (|i · ·〉) = 1

2

(

〈i t1 t2|+ 〈i t2 t1|
)

|ω〉

=
1

2

(

〈i t1 t2|+ 〈i t2 t1|
)1

2

(

|i t1 t2〉+ (−1)i|i t2 t1〉
)

=
1

4

(

〈t1|t1〉〈t2|t2〉+ (−1)i〈t1|t2〉〈t2|t1〉
+ 〈t2|t1〉〈t1|t2〉+ (−1)i〈t2|t2〉〈t1|t1〉

)

=
1

4

[(

1 + (−1)i
)

+
(

1 + (−1)i
)

〈t1|t2〉〈t1|t2〉∗
]

=
1

4

(

1 + (−1)i
)(

1 + |〈t1|t2〉|2
)

. (3.101)

Exercise 3.57. Show that P (|0 · ·〉)+P (|1 · ·〉) = 1, regardless of the values of the
incoming qubits |t1〉 and |t2〉.
Notice that, if you prepare the two target qubits |t1〉 and |t2〉 such that they are
perpendicular, 〈t1, t2〉 = 0, it follows that P

(

|0 · ·〉
)

= 1/2 and P
(

|1 · ·〉
)

= 1/2 as
well. If, instead, they are prepared in the same state, 〈t1, t2〉 = 1, the probabilities
are P

(

|0 · ·〉
)

= 1 and P
(

|1 · ·〉
)

= 0.

32

4 Quantum Algorithms

We often hear quantum computing experts and popular science writers alike say
that future quantum computers will be much faster than standard computers. They
will be so fast that, according to some, in a matter of minutes or even seconds we
will be able to solve problems that would take billions of years (more than the age
of the universe!) for the most powerful classical supercomputers. Moreover, they
say that there is good evidence to think there are problems that, in principle, a
quantum computer will be able to solve but classical computers will not, no matter
how powerful they become or how much time we give them to work on them. All
these claims seem to be unfounded exaggerations, part of the contemporary hype
around quantum computers. However, there is something that remains true: there
is something in the way a quantum computer processes information — the super-
position of quantum states — that has the potential to make it faster than classical
computers, at least at solving certain problems.
Note that here we are not referring to the physical realization of these devices,

but to the theoretical mode of computation. That is, on paper at least, quantum
computers will be faster than classical ones thanks to their unique way of processing
information and not because of their implementation. In other words, if we use
the quantum circuit model of computation instead of the classical circuit model to
design the solution to a problem, we may arrive at a circuit that solves it in less
time.
We have been careful to emphasize that quantum computers will be faster than

classical ones at solving some problems, but not all. In the circuit model of com-
putation, whether classical or quantum, an algorithm is a circuit, that is, a specific
arrangements of gates, that given a certain input, delivers the desired output. So,
when people, experts and non-experts, loosely say that quantum computers will be
much faster than classical computers, what they really mean is that we known some
specific quantum algorithms that are faster than the classical algorithms created to
solve the same problem.
After all this, you may be wondering, “Ok, but what exactly does “faster” mean?”

This is something that, as we will see in the next examples, will depend on each
particular problem.

Box 4.1. The probabilistic model of computation.

Another classical model of computation is the probabilistic model. If we have
a classical system and there are various outcomes for an experiment, we can
use a probabilistic description of the system. For example, when you toss an
unbiased coin in the air, you can describe the state of the system with a real
two-dimensional vector

|C〉 = 1

2
|H〉+ 1

2
|T 〉 . (4.1)

The coefficients 1/2 are the probabilities of observing head or tail when the
coin stops. If the coin is biased, the state rector will take the more general
form

|C〉 = pH |H〉+ pT |T 〉 , (4.2)

33

where pH , pT ∈ [0, 1] and pH + pT = 1. The probabilities pH and pT can be
obtained by defining an inner product on R2 such that

〈H|C〉 = pH , 〈T |C〉 = pT . (4.3)

No doubt, all this looks very similar to the mathematical description of
the single qubit (2.3). We can even write everything in column vectors and
introduce matrix transformations on these vectors. It seems that the only dif-
ference between the two models is that the coefficients are real in one case and
complex in the other. The two descriptions are so similar that many computer
scientists prefer to introduce the mathematics of quantum mechanics by using
the probabilistic model. Of course, we already knew quantum mechanics, so
we did not need to do that.
What we want to stress here, though, is that, despite the resemblance between
the mathematics of the probabilistic and the quantum models of computation,
there is a fundamental — philosophical, if you wish — difference between the
two: the uncertainty in the probabilistic model is due to our limited knowledge
of the system, whereas the uncertainty in the quantum model is intrinsic to
nature. In principle, we can develop a probabilistic model of computation
with complex coefficients (there is nothing wrong with that), but as long as
it is based on a physical system which is classical, the superposition of states
will not have the same meaning as the superposition of states occurring in the
quantum world. In a classical system, whether deterministic or probabilistic, a
measurement reveals the true state of the system before the measurement. In
contrast, in quantum mechanics, a measurement fixes the state of the system.

4.1 Deutsch’s Algorithms

We start with the simplest and historically the first quantum algorithm ever con-
ceived, the algorithm proposed by David Deutsch in 1996 and then we discuss its
generalization proposed a few months later by Deutsch himself and Richard Jozsa.
The goal of these quantum algorithms is not their real-life application, but to prove
that quantum algorithms, at least in principle, can solve computational problems
faster than the fastest classical algorithm.

The Deutsch algorithm

Suppose we are given a Boolean function f : {0, 1} → {0, 1} and we are told that
it is constant or balanced. However, we do not know which of the two is the case.
By constant we mean that f(0) = f(1), whether because

f(0) = f(1) = 0 , (4.4)

or
f(0) = f(1) = 1 , (4.5)

34

On the other hand, balanced means that f(0) 6= f(1), that is,

f(0) = 0 6= f(1) = 1 , (4.6)

or
f(0) = 1 6= f(1) = 0 . (4.7)

To keep track of these two possibilities, we will indicate each of the previous cases
by fc and fb, respectively.
It seems clear that it is not enough to know the value of the function at one single

input, whether 0 or 1, to determine if the function is constant or balanced; we
need to know the value of the function at both 0 and 1. If the function has to be
evaluated at two different values, computer scientists say that the function has to
be called “twice” or “two times”. In general, the more calls your algorithm makes
to a function, the more complex and slow it is. Conversely, the less calls you make
to a function, the less complex and faster is your algorithm. This is the principle of
what is known as query complexity.
What Deutsch discovered is that we can find out whether the function is constant

or balanced by calling the function only once. The quantum circuit he conceived
was the following,

|0〉 H H

|1〉 H
Uf

Fig. 28. Circuit configuration for Deutsch’s algorithm.

The gate Uf , called an oracle or more properly a XOR oracle, transforms the com-
putational basis vectors according to

|i〉|j〉 Uf7−−→ |i〉|j ⊕ f(i)〉 . (4.8)

Note that it is controlled gate. It is usually depicted as follows,

|i〉 |i〉
|j〉 |j ⊕ f(i)〉Uf

Fig. 29. The oracle of the Deutsch algorithm.

As we said, in the query complexity model we only care about the number of calls
made by the algorithm to the function. The inherent complexity proper to the
functioning of the oracle is ignored. This is why the oracle is often called a black
box.

Exercise 4.1. Prove that Uf is unitary.

Exercise 4.2. What is the matrix representation of Uf?

35

We have all the elements to analyze Deutsch’s circuit in Figure 28:

|0 1〉 H⊗H7−−−−→ |+−〉

=
1

2

(

|0 0〉 − |0 1〉+ |1 0〉 − |1 1〉
)

Uf7−−−−→ 1

2
Uf

(

|0 0〉 − |0 1〉+ |1 0〉 − |1 1〉
)

=
1

2

(

|0 0⊕ f(0)〉 − |0 1⊕ f(0)〉+ |1 0⊕ f(1)〉 − |1 1⊕ f(1)〉
)

. (4.9)

Let us first suppose that the function f is constant. Substituting f(1) by f(0) and
using fc instead of f ,

Ufc|+−〉 =
1

2

(

|0 0⊕ fc(0)〉 − |0 1⊕ fc(0)〉+ |1 0⊕ fc(0)〉 − |1 1⊕ fc(0)〉
)

=
1

2

(

|0〉+ |1〉
)

|fc(0)〉 −
1

2

(

|0〉+ |1〉
)

|1⊕ fc(0)〉

= |+〉 1√
2

(

|fc(0)〉 − |1⊕ fc(0)〉
)

. (4.10)

Consider now the case where f is balanced. Since fb(1) = 1− fb(0), it follows that

Ufb|+−〉 =
1

2

(

|0 fb(0)〉 − |0 1⊕ fb(0)〉+ |1 1− fb(0)〉 − |1 1⊕ 1− fb(0)〉
)

=
1

2
|0〉

(

|fb(0)〉 − |1⊕ fb(0)〉
)

+
1

2
|1〉

(

|1− fb(0)〉 − |1⊕ 1− fb(0)〉
)

.

(4.11)

When fb(0) = 0,

Ufb,0|+−〉 =
1

2
|0〉

(

|0〉 − |1〉
)

+
1

2
|1〉

(

|1〉 − |1⊕ 1〉
)

=
1√
2

(

|0〉 − |1〉
) 1√

2

(

|0〉 − |1〉
)

= | − −〉 , (4.12)

and, when fb(0) = 1,

Ufb,1|+−〉 =
1

2
|0〉

(

|1〉 − |1⊕ 1〉
)

+
1

2
|1〉

(

|0〉 − |1⊕ 1− 1〉
)

= − 1√
2

(

|0〉 − |1〉
) 1√

2

(

|0〉 − |1〉
)

= −| − −〉 . (4.13)

In summary, for f constant,

Ufc|+−〉 = ±| +−〉 , (4.14)

and, for f balanced,
Ufb|+−〉 = ±| − −〉 . (4.15)

The last Hadamard gate in Figure 28 gives: for f constant,

Ufc|+−〉 H⊗17−−−−→ ±(H ⊗ 1)|+−〉 = ±|0−〉 , (4.16)

36

and, for f balanced,

Ufb|+−〉 H⊗17−−−−→ ±(H ⊗ 1)| − −〉 = ±|1−〉 . (4.17)

Finally, we measure the state of the upper qubit. If the measurement gives the
state |0〉, then we know with absolute certainty that the function is constant. If,
instead, we measure |1〉, then the function is balanced. This completes the Deutsch
algorithm. As stated, we can discover whether the function is constant or balanced
by calling it just once.
For completeness’ sake, let us present the Deutsch algorithm in a slightly more

general form. Suppose that two qubits,

|u〉 =
∑

i

ui|i〉 , |b〉 =
∑

j

bj |j〉 , (4.18)

enter the oracle in Figure 29. The output is given by,

|u〉|b〉 =
∑

i,j

uibj |i〉|j〉
Uf7−−→

∑

i,j

uibj |i〉|j ⊕ f(i)〉

= u0b0|0〉|0⊕ f(0)〉+ u0b1|0〉|1⊕ f(0)〉

+ u1b0|1〉|0⊕ f(1)〉+ u1b1|1〉|1⊕ f(1)〉 . (4.19)

When the function is constant, fc(0) = fc(1), we group the first term with the third
and the second with the fourth,

Ufc(|u〉|b〉) =
(

u0b0|0〉+ u1b0|1〉
)

|fc(0)〉+
(

u0b1|0〉+ u1b1|1〉
)

|1⊕ fc(0)〉 . (4.20)

When f is balanced, fb(0) 6= fb(1), we group the first term with the fourth and the
second with the third,

Ufb(|u〉|b〉) =
(

u0b0|0〉+ u1b1|1〉
)

|fb(0)〉+
(

u0b1|0〉+ u1b0|1〉
)

|1⊕ fb(0)〉 . (4.21)

Note that equations (4.20) and (4.21) are telling us that the bottom incoming qubit
cannot be in a state with b0 = b1, if not we would not be able to identify whether
f is constant or balanced. So, for the algorithm to work, the first condition is to
set b0 6= b1. Now, b0 and b1 have to be chosen so that a single measurement of the
upper qubit will tell us if the function is constant or balanced. In general, of course,
|b0|2 + |b1|2 = 1; however, for simplicity we can choose b0 = 1/

√
2 = −b1. That is,

|b〉 = |−〉. We then have that

Ufc(|u〉|−〉) =
1√
2

(

u0|0〉+ u1|1〉
)

|fc(0)〉 −
1√
2

(

u0|0〉+ u1|1〉
)

|1⊕ fc(0)〉

=
1√
2

(

u0|0〉+ u1|1〉
)(

|fc(0)〉 − |1⊕ fc(0)〉
)

, (4.22)

and

Ufb(|u〉|−〉) =
1√
2

(

u0|0〉 − u1|1〉
)

|fb(0)〉 −
1√
2

(

u0|0〉 − u1|1〉
)

|1⊕ fb(0)〉

=
1√
2

(

u0|0〉 − u1|1〉
)(

|fb(0)〉 − |1⊕ fb(0)〉
)

. (4.23)

37

Since we want a single measurement on the upper qubit to be able to unambiguously
distinguish its state, we need to choose u0 and u1 such that the two vectors (u0|0〉+
u1|1〉)/

√
2 and (u0|0〉 − u1|1〉)/

√
2 are perpendicular. The condition is then,

1√
2

(

〈0|u∗0 + 〈1|u∗1
) 1√

2

(

u0|0〉 − u1|1〉
)

=
1

2
u∗0u0 −

1

2
u∗1u1

=
1

2
(1− u∗1u1 − u∗1u1) =

1

2
− u∗1u1 = 0

=
1

2
(u∗0u0 − 1 + u∗0u0) = u∗0u0 −

1

2
= 0 .

This is enough to know whether f is constant or balance. For, example, as we did
above, the usual choice is u0 = u1 = 1/

√
2.

The Deutsch-Jozsa algorithm

Suppose you are given a Boolean function f : {0, 1}n → {0, 1} and you are told
that it is constant or balanced. However, you do not know which of the two is the
case. Again, as for the Deutsch algorithm (for which n = 1), the quantum circuit we
will discuss below finds whether the function is constant or balanced by calling the
function f a fewer number of times than the classical optimal solution. By constant
we mean that f takes the same value, 0 or 1, for all the x’s in the domain {0, 1}n.
By balanced we mean that half of the x’s in {0, 1}n take the value 0 and the other
half the value 1.

Exercise 4.3. Show that these definitions are consistent with the ones given above
for the Deutsch algorithm.

To easily generalize to the Boolean function f : {0, 1}n → {0, 1}, let us start by
considering n = 1 and n = 2. The case n = 1 is just the Deutsch algorithm already
discussed. The evolution of the incoming product state |0〉|1〉 as it moves through
the circuit shown in Figure 28 is

|0 1〉 H⊗H7−−−−→H|0〉 ⊗H|1〉 = 1√
2

∑

i

|i〉 1√
2

∑

k

(−1)k|k〉

=
1√
22

∑

i,k

(−1)k|i k〉

Uf7−−−−→ 1

2

∑

i,k

(−1)k|i k ⊕ f(i)〉

H⊗17−−−−→ 1

2

∑

i,k

(−1)kH|i〉|k ⊕ f(i)〉

=
1

2

∑

i,k

(−1)k 1√
2

∑

j

(−1)ij |j〉|k ⊕ f(i)〉

=
1

2

∑

i,j,k

(−1)k+ij 1√
2
|j k ⊕ f(i)〉 . (4.24)

The following is a similar circuit, but with three incoming single qubits instead of
two,

38

|i〉

|j〉

|k〉

|i〉

|j〉

|k ⊕ f(i j)〉

Uf

Fig. 30

The oracle in this case transforms

|i〉|j〉|k〉 Uf7−→ |i〉|j〉|k ⊕ f(i j)〉 . (4.25)

The incoming state |0〉|0〉|1〉 evolves as follows,

|0 0 1〉 H⊗2⊗H7−−−−−−→H|0〉 ⊗H|0〉 ⊗H|1〉 = 1√
2

∑

i1

|i1〉
1√
2

∑

i2

|i2〉
1√
2

∑

k

(−1)k|k〉

=
1√
23

∑

i1,i2,k

(−1)k|i1 i2 k〉

Uf7−−−−−→ 1

23/2

∑

i1,i2,k

(−1)k|i1 i2 k ⊕ f(i1 i2)〉

H⊗2⊗17−−−−−→ 1

23/2

∑

i1,i2,k

(−1)kH|i1〉H|i2〉|k ⊕ f(i1 i2)〉

=
1

23/2

∑

i1,i2,k

(−1)k 1√
2

∑

j1

(−1)i1j1|j1〉
1√
2

∑

j2

(−1)i2j2|j2〉|k ⊕ f(i1 i2)〉

=
1

22

∑

i1,i2,j1,j2,k

(−1)k+i1j1+i2j2
1√
2
|j1 j2 k ⊕ f(i1 i2)〉 . (4.26)

In general, the control qubits form the state |0〉⊗n and the oracle is

...
...

|i1〉

|in〉
|j〉

|i1〉

|in〉
|j ⊕ f(i1 . . . in)〉

Uf

Fig. 31. Oracle of the Deutsch-Jozsa algorithm.

or, in simplified form,

|x〉 / / |x〉
|j〉

n n

|j ⊕ f(x)〉Uf

Fig. 32. Simplified diagram for the oracle of the Deutsch-Jozsa algorithm.

39

By induction, we see that the state of the system right before the measurements is
given by,

|0〉⊗n ⊗ |1〉 H⊗n⊗H7−−−−−−→ Uf7−−→ H⊗n⊗17−−−−−→ |ω〉f(x) =
1

2n

∑

x,y,k

(−1)k+x·y|y〉 1√
2
|k ⊕ f(x)〉 ,

(4.27)
where we are using the dot in x · y to indicate that x and y are in binary notation
(not in decimal notation!). Recall the discussion concerning the notation used in
equation (3.47). Writing explicitly the sum over k,

|ωf(x)〉 =
1

2n

∑

x,y

(−1)x·y|y〉 1√
2

(

|f(x)〉 − |1⊕ f(x)〉
)

. (4.28)

Note that f(x) = 0 gives

|ω〉0 =
1

2n

∑

x,y

(−1)x·y|y〉|−〉 , (4.29)

and for f(x) = 1,

|ω〉1 =
1

2n

∑

x,y

(−1)x·y|y〉(−1)|−〉 . (4.30)

Therefore,

|0〉⊗n ⊗ |1〉 7−→ |ω〉f(x) =
1

2n

∑

x,y

(−1)f(x)+x·y|y〉|−〉 . (4.31)

The probability of measuring all the upper qubits in the state |0〉 is

P
(

|0 . . . 0 ·〉
)

=
∣

∣〈0 . . . 0| 1
2n

∑

x,y

(−1)f(x)+x·y|y〉
∣

∣

2

=
1

22n

∣

∣

∣

∑

i1,...,in

∑

j1,...,jn

(−1)f(i1...in)+i1j1+...+i1jn〈0 . . . 0|j1 . . . jn〉
∣

∣

∣

2

=
1

22n

∣

∣

∣

∑

i1,...,in

∑

j1,...,jn

(−1)f(i1...in)+i1j1+...+i1jnδj10 . . . δjn0

∣

∣

∣

2

=
1

22n

∣

∣

∣

∑

x

(−1)f(x)
∣

∣

∣

2

. (4.32)

If f is constant, we have two possibilities: whether f(x) = 0, in which case

P
(

|0 . . . 0 ·〉
)

=
1

22n
∣

∣2n(−1)0
∣

∣

2
=

1

22n
4n = 1 , (4.33)

or f(x) = 1,

P
(

|0 . . . 0 ·〉
)

=
1

22n
∣

∣2n(−1)1
∣

∣

2
=

1

22n
4n = 1 . (4.34)

Thus, in both cases the probability of measuring the upper qubits in the state |0 . . . 0〉
is 1.
For f balanced,

P
(

|0 . . . 0 ·〉
)

=
1

22n

∣

∣

∣

2n

2
(−1)0 + 2n

2
(−1)1

∣

∣

∣

2

=
1

22n

∣

∣2n−1 − 2n−1
∣

∣

2
= 0 . (4.35)

40

What this is saying is that in case the function f is balanced, it is impossible for all
the upper qubits to be measured in the state |0〉; at least one of them is measured
in |1〉.
In conclusion, by just calling once the oracle and choosing the appropriate states

to measure, we can determine whether the function f is constant or balanced. In
the classical case, best case scenario we had to call the function twice.

Exercise 4.4. Apply the previous analysis to the results (4.24) and (4.26).

4.2 Shor’s Factoring Algorithm

Shor’s algorithm is without doubt the most famous of all the quantum algorithms
conceived so far. When it was invented in the mid-90s, it propelled the field of
quantum computing into a new era of development. However, despite its undeniable
notoriety, historical importance and possible future application, here we will only
give a summary of the concepts it involves and its main attributes. The motivation
for this decision is twofold. First, as we said in the introduction, the goal of the
present notes is to sketch the main physical ideas and mathematical tools used in
quantum computing; alas, Shor’s algorithm is too complex to be properly presented
in a few pages. Second, Shor’s algorithm concerns a rather technical domain of
quantum computing, that of secure transfer of information (cryptography), and we
are instead more interested in the physics of quantum computing.
We start with a rough definition of Shor’s algorithm to get an idea of the ingre-

dients involved. Shor’s algorithm is a quantum algorithm that solves the problem
of finding the prime factors of an integer number faster than any known classical
algorithm. The first thing we recognize is that some number theory must be at play
here. In addition, the solution found by Shor exploits the connection between prime
factoring and something we will describe below as period finding. The latter uses a
mathematical technique called the quantum Fourier transform (See Box 4.2).
Simply put, the prime factoring problem asks you to discover the two prime factors

of a number that a priori is known to be the product of these numbers. For example,
you may be asked to find the prime factors of 15 or 21. Of course, in these simple
cases you know that the prime factors are 3,5 and 3,7, respectively. To check it, you
simply multiply 3× 5 and 3× 7. However, it is not so easy to find the prime factors
of a larger number such as 755,221. You can check that they are 773 and 977. As
you see, if I give you the two prime factors, you can easily verify that they are in fact
the correct ones, however, to find them is not so easy. As the number becomes larger
and larger, the problem of finding the prime factors becomes harder and harder and
eventually impossible to solve by classical computational methods. The difficulty of
solving this problem is at the heart of the modern encoding process used to transfer
secure data (the RSA cryptosystem). Let us use the examples given above to see
how the prime factoring problem translates into the period finding problem and how
Shor’s algorithm partially solves it.
Let us say we want to find the prime factors of 15. We claim that the following

ansatz will give us the prime factors,

x2 = 1mod15 . (4.36)

A solution is obviously x = 4. However, the equation says much more than that. In

41

fact, note that

42 = 1mod15 =⇒ 42 − 1 = 0mod15

=⇒ (4 + 1)(4− 1) = 0mod15

=⇒ 5 · 3 = 0mod15 .

So, the equation x2 = 1mod15 actually gives the prime factors of 15. A similar
procedure applies to the number 21. We start with

x2 = 1mod21 , (4.37)

and find that

82 = 1mod21 =⇒ 82 − 1 = 0mod21

=⇒ (8 + 1)(8− 1) = 0mod21

=⇒ 32 · 7 = 0mod21 .

By just a slight modification of the previous example, we see that the equation
x2 = 1mod21 indeed gives the prime factors of 21.

Exercise 4.5. Apply this procedure to find the prime factors of 35.

With the success of these examples at hand, we may be tempted to generalize the
formula and say that the two prime factors of any number N = p1p2 can be found
by solving

x2 = 1modN . (4.38)

As before,

x2 = 1modN =⇒ (x+ 1)(x− 1) = 0modN

=⇒ pn1

1 p
n2

2 = 0modN .

However, it seems that not all prime factors can be found by using the simple formula
(4.38). For example, the method does not apply to the number 77. Instead, we have
that

92 = 4mod77 =⇒ (9 + 2)(9− 2) = 0mod77

=⇒ 11 · 7 = 0mod77 .

Exercise 4.6. Use this procedure to find the prime factors of 755,221.

Thus, it seems that the problem of finding the prime factors is getting more com-
plicated: not only do we have to find x, but now also the number c in front of modN .
Perhaps we should modify the initial ansatz (4.38) as follows,

x2 = cmodN . (4.39)

However, we do not need to do that. For example, consider again the prime factors
of 15. We saw that a solution of (4.36) is

24 = 1mod15 , (4.40)

42

but another solution is
28 = 1mod15 . (4.41)

In fact, for any k = 0, 1, 2, . . ., the following are solutions,

24k = 1mod15 , 24k+1 = 2mod15 , 24k+2 = 4mod15 , 24k+3 = 8mod15 .
(4.42)

Similarly, for 21 all the following are solutions

26k = 1mod21 , 26k+1 = 2mod21 , 26k+2 = 4mod21

26k+3 = 8mod21 , 26k+4 = 16mod21 , 26k+5 = 11mod21 .

This periodicity explains why the formula (4.39) is also a solution to the prime
factoring problem (in some special cases, of course). Thus, assuming that this
procedure applies to the integer number N , its prime factors will be given by the
equation

ark = 1modN , (4.43)

or, choosing k = 1,
ar = 1modN . (4.44)

The exponent r is called the period. Note that the period r is the smallest non-trivial
exponent R for which aR = 1modN . Since we need to use the difference of squares
formula, we have that r must be even,

ar − 1 = 0modN =⇒ (ar/2 + 1)(ar/2 − 1) = 0modN . (4.45)

Exercise 4.7. Show that the method does not apply if N = 21 and a = 5.

Exercise 4.8. What is the period for N = 77 and a = 3?

In conclusion, here is the procedure: given a number N , we start by picking an
integer a and then we proceed to find the period r. The prime factors of N follows
from equation (4.44) (of course, as long as r is even). What Shor’s algorithm does
is to determine the period r faster than any classical algorithm invented so far.

Exercise 4.9. Show that ar = 1modN is equivalent to

1 = ar modN . (4.46)

Our goal then is to show how Shor’s algorithm finds the period r of the function

f(N, a, r) = ar modN . (4.47)

Here, a is an integer number coprime to N . That is, a is an integer number whose
prime factors are not prime factors of N .
As we said, we will not present Shor’s algorithm in its most general form. Instead,

let us see how it finds the prime factors of 15. The circuit is the following,

|0〉⊗4 / H⊗4 / QFT†
4 / ——–

|0〉⊗4 / / ——– /

4

4

4

4

4

4

|ω〉

Uf

Fig. 33. Circuit designed to find the prime factors of 15.

43

The oracle Uf is defined by,

|x〉|0〉 Uf7−−→|x〉|0⊕ f(15, 13, x)〉 = |x〉|13xmod〉 , (4.48)

where everything is written in decimal notation.
The analysis of the circuit is as follows. First, we have the Hadamard gates that

act on the four single qubits at the top of the diagram,

|0〉⊗4|0〉⊗4 H⊗4⊗1⊗4

7−−−−−−−→H⊗4|0〉⊗4|0〉⊗4 =
(

H|0〉
)⊗4|0〉⊗4

=
(1√

2

∑

i

|i〉
)⊗4

|0〉⊗4 =
1

4

∑

i,j,k,l

|i j k l〉|0〉⊗4

=
1

4

15
∑

x=0

|x〉|0〉 . (4.49)

Be aware that in the last step we changed from binary to decimal notation.
Then, there is the oracle

Uf7−−→ 1

4

15
∑

x=0

|x〉|13xmod15〉

=
1

4

(

|0〉+ |4〉+ |8〉+ |12〉
)

|1〉+ 1

4

(

|1〉+ |5〉+ |9〉+ |13〉
)

|13〉

+
1

4

(

|2〉+ |6〉+ |10〉+ |14〉
)

|3〉+ 1

4

(

|3〉+ |7〉+ |11〉+ |15〉
)

|6〉 . (4.50)

Suppose now that the measurement of the bottom register gives |6〉. In this case,
the state after the measurement is

M7−−→ 1

2

(

|3〉+ |7〉+ |11〉+ |15〉
)

|6〉 . (4.51)

If instead of |6〉, any of the other states came out, (|1〉, |13〉 or |3〉), the analysis
below would be similar.
Then, we have the inverse quantum Fourier transform on the upper register,

QFT†
47−−−−→ 1

2

(

QFT†
4|3〉+QFT†

4|7〉+QFT†
4|11〉+QFT†

4|15〉
)

= |ω〉 . (4.52)

We will sketch how to compute the first of these inverse QFT’s, the others are
similar. Using the formula (4.61),

QFT†
4|3〉 =

1

4

15
∑

y=0

e
πi
8
3y|y〉

=
1

4

(

|0〉+ e
πi
8
3|1〉+ e

πi
8
6|2〉+ e

πi
8
9|3〉

)

+
1

4

(

e
πi
8
12|4〉+ e

πi
8
15|5〉+ e

πi
8
18|6〉+ e

πi
8
21|7〉

)

+
1

4

(

e
πi
8
24|8〉+ e

πi
8
27|9〉+ e

πi
8
30|10〉+ e

πi
8
33|11〉

)

+
1

4

(

e
πi
8
36|12〉+ e

πi
8
39|13〉+ e

πi
8
42|14〉+ e

πi
8
45|15〉

)

. (4.53)

44

Computing all of them and substituting in (4.52) yields

|ω〉 = 1

2
|0〉+ i

2
|4〉 − 1

2
|8〉 − i

2
|12〉 . (4.54)

The corresponding probabilities are,

P
(

|0〉
)

= P
(

|4〉
)

= P
(

|8〉
)

= P
(

|12〉
)

= 1/4 . (4.55)

Exercise 4.10. Do all the calculations that lead to (4.54).

With this, we conclude the quantum analysis of Shor’s algorithm. What remains is
a classical post-processing, where the period r = 4 is found. We will not provide the
details here, but you can see it from the possible measurement outcomes 0, 4, 8, 12.

Box 4.2. The quantum Fourier transform.

One of the mathematical tools used in Shor’s algorithm — but also in other
quantum algorithms — is the so called quantum Fourier transform or QFT
for short. In few words, the QFT is a change of basis from the computational
basis to the Fourier basis.
In (2.27) we saw how we can express any n-qubit state vector |Q〉 ∈ HQ

∼= C2n

in binary as well as decimal notation,

|Q〉 =
∑

i1,...,in

αi1...in|i1 . . . in〉 =
N−1
∑

x=0

αx|x〉 , (4.56)

where N = 2n. However, the vectors |x〉 are not the only possible vectors one
can use to span HQ. In fact, an infinite amount of alternative sets can be
chosen. One such set is the Fourier basis with elements given by the following
formula

|x〉QFT =
1√
N

N−1
∑

y=0

e
2πi
N

xy|y〉 . (4.57)

The vector |x〉QFT is the quantum Fourier transformed of |x〉, that is, |x〉QFT =
QFTn|x〉. Be aware that here, y and x must be expressed in decimal notation.

Exercise 4.11. Show that QFT1|i〉 = |(−1)i〉, that is, QFT1 = H .

To show how the quantum Fourier transform works in more complex situa-
tions, let us show explicitly how to obtain the Fourier basis vectors of the
2-qubit Hilbert space Hq2, |j k〉 7→ QFT2|j k〉 = |j k〉QFT.
The general formula (4.57) in this case is

QFT2|j k〉 = QFT2|x = 2j + k〉 = 1

2

3
∑

y=0

e
πi
2
xy|y〉 . (4.58)

The first two Fourier basis vectors are,

QFT2|0 0〉 = QFT2|x = 0〉 = 1

2

3
∑

y=0

e
πi
2
0y|y〉

=
1

2

(

|0〉+ |1〉+ |2〉+ |3〉
)

=
1

2

(

|0 0〉+ |0 1〉+ |1 0〉+ |1 1〉
)

,

45

and

QFT2|0 1〉 = QFT2|x = 1〉 = 1

2

3
∑

y=0

e
πi
2
1y|y〉

=
1

2

(

e
πi
2
0|0〉+ e

πi
2
1|1〉+ e

πi
2
2|2〉+ e

πi
2
3|3〉

)

=
1

2

(

|0 0〉+ i|0 1〉 − |1 0〉 − i|1 1〉
)

.

Exercise 4.12. Find the Fourier transformed of the other two basis vectors
and show that the matrix representation of QFT2 in the computational basis
of Hq2 is

QFT2 =
1

2









1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









. (4.59)

Exercise 4.13. Find the matrix representation of QFT3 and QFT4.

Exercise 4.14. Show that the Fourier basis vectors ofHQ can also be written

QFTn|x〉 =
1√
N

n
⊗

l=1

∑

j

e
2πi

2l
xj|j〉 . (4.60)

Rewrite this expression in terms of ωN = e2πi/N .

Exercise 4.15. What are the matrices of QFT2, QFT3 and QFT4 in terms
of ωN = e2πi/N? Do you recognize any pattern? What about QFTn?

If the QFT takes us from a description of the qubit state vector in the compu-
tational basis to the Fourier basis, the inverse QFT, denoted QFT†

n = QFT−1
n ,

does precisely the opposite,

QFT†
n|x〉QFT =

1√
N

N−1
∑

y=0

e−
2πi
N

xy|y〉 . (4.61)

4.3 Superdense Coding and Teleportation

Recall that, by definition, a separable or product state can always be written as the
tensor product of two state vectors. In contrast, an entangled state is non-separable
(see equation (2.24)). By abuse of language, even though a 2 qubit is generally
entangled and its state vector is not the product of two single-qubit state vectors, in
the literature the vectors of the first and second Hilbert spaces are frequently called
“first” and “second” qubits, respectively.
Suppose now the following situation,

46

|+〉

|0〉
⊕

|β0〉

Fig. 34. Production of a Bell state using the CNOT gate.

Initially, the two single-qubit states |+〉 and |0〉 are not entangled, so the composite
system is in the product state |+〉|0〉. After the CNOT gate is applied, the outgoing
state is

|+〉|0〉 = 1√
2

(

|0 0〉+ |1 0〉
) CNOT7−−−−−→ 1√

2

(

|0 0〉+ |1 1〉
)

≡ β0 .

This is an entangled state in Hq2 and it is called a Bell state. Let us momentarily
denote it by β0. An alternative, but obviously equivalent form of creating β0 is
illustrated in the following diagram,

|0〉 H

|0〉
⊕

|β0〉

Fig. 35. Alternative set-up to the circuit in Figure 34.

More generally, we can allow the incoming states to be in any of the computational
basis state vectors,

|i〉 H

|j〉
⊕

|βji〉

Fig. 36. Set-up to create any Bell state.

The possibilities are:

|0〉|0〉 H⊗17−−−−→ 1√
2

(

|0〉+ |1〉
)

|0〉 CNOT7−−−−−→ 1√
2

(

|0 0〉+ |1 1〉
)

≡ |β0〉 ,

|0〉|1〉 H⊗17−−−−→ 1√
2

(

|0〉+ |1〉
)

|1〉 CNOT7−−−−−→ 1√
2

(

|0 1〉+ |1 0〉
)

≡ |β1〉 ,

|1〉|0〉 H⊗17−−−−→ 1√
2

(

|0〉 − |1〉
)

|1〉 CNOT7−−−−−→ 1√
2

(

|0 0〉 − |1 1〉
)

≡ |β2〉 ,

|1〉|1〉 H⊗17−−−−→ 1√
2

(

|0〉 − |1〉
)

|1〉 CNOT7−−−−−→ 1√
2

(

|0 1〉 − |1 0〉
)

≡ |β3〉 .

The four states |β0〉, |β1〉, |β2〉, |β3〉 ∈ Hq2 are called Bell states or EPR pairs. Note
that they are perpendicular, so they form a basis for Hq2. This basis is called the
Bell basis. Of course, we could also have obtained them in a quicker way by using

47

index notation,

|i〉|j〉 H⊗17−−−−→ H|i〉|j〉 = 1√
2

(

|0〉+ (−1)i|1〉
)

|j〉 (4.62)

CNOT7−−−−−→ 1√
2

(

|0〉|j〉+ (−1)i|1〉|j̄〉
)

= |βji〉 . (4.63)

Interchanging i↔ j, the general Bell state vector becomes

|βij〉 =
1√
2

(

|0 i〉+ (−1)j|1 ī〉
)

. (4.64)

Comparing with the states |βi〉 defined above, we see that |β00〉 = |β0〉, |β01〉 = |β1〉,
|β10〉 = |β2〉 and |β11〉 = |β3〉.

Exercise 4.16. Write the four computational basis vectors of Hq2 in terms of the
Bell states.

Superdense coding is a quantum communication protocol designed to communicate
two classical bits of information (b1b2 = 00, 01, 10 or 11) by sending only one single
qubit. That is, the code can be used to communicate one of four classical pieces of
information: it can be four numbers, four colors, etc. It works as follows. Imagine
that there is a sender and a receiver, each with a physical qubit of a 2-qubit system
forming a Bell state. The following sequence of unitary transformations shows how
the protocol operates.

At the sender’s side:

|β00〉 =
1√
2

(

|0 0〉+ |1 1〉
)

7−→ 1√
2

(

|0⊕ b2 0〉+ |1⊕ b2 1〉
)

7−→ 1√
2

(

(−1)b1b2 |b2 0〉+ (−1)b1(b2⊕1)|1⊕ b2 1〉
)

= |q〉 .

At the receiver’s side:

|q〉 7−→ 1√
2

(

(−1)b1b2 |b2 0⊕ b2〉+ (−1)b1 b̄2 |1⊕ b2 1⊕ (1⊕ b2)〉
)

= |(−1)b1〉|b2〉 (up to a phase)

7−→ |b1〉|b2〉

7−→ b1b2 .

Exercise 4.17. First, determine each of transformations indicated above by arrows,
then draw the circuit.

Exercise 4.18. Repeat the previous steps in case the preshared 2 qubit is a general
Bell state |βij〉.

Quantum teleportation is a communication protocol designed to transfer the infor-
mation of a single qubit through a classical channel. The circuit diagram is similar
to that of superdense coding, the difference being that the parts of the sender and
the receiver are interchanged.

48

A B

|q〉 H
⊕

X Z |q〉
|β00〉

Fig. 37. The quantum teleportation circuit.

Remember that the transfer of classical bits is represented graphically by a double
line, while we use single lines for qubits.

Exercise 4.19. Write down the evolution of the initial state |q〉|β00〉 at every step
of the circuit and show that the outgoing qubit is indeed |q〉.

Exercise 4.20. Compare the circuit for quantum teleportation shown in Figure 37
with the circuit you drew in Exercise 4.17 for superdense coding.

4.4 Quantum Simulation

The simulation of a quantum mechanical system by using a quantum computer was
Feynman’s seminal idea on quantum computers. He was convinced that quantum
systems, such as common molecules, were so complex that the only way to predict
their behaviour was through the use of a device fully built according to the same
physical principles as the system itself. Despite Feynman’s early vision and the effort
made for more than twenty years in that direction, quantum simulation remains a
challenging problem. It is not difficult to see why this is so.
Suppose, for example, that you have a quantum system of n interacting particles

(let us say electrons), each with two possible quantum states (the electrons can be
up or down). A fully quantum mechanical description of the system should keep
track of the quantum superposition of the 2n possible configurations of the system
at every time t. If the number of particles is small and the interactions are simple
enough, we may expect a classical computer to do the job. However, as soon as the
number of particles increases substantially, for instance to n = 100, the number of
possible configurations to keep track of becomes so large that the problem becomes
intractable for classical computers. For this, we need quantum computers.
As you know very well, the dynamics of a quantum system is described by the

Schrödinger equation,

Ĥ|ψ(t)〉 = i
d

dt
|ψ(t)〉 , (4.65)

where Ĥ = Ĥ† is the Hamiltonian operator and |ψ(t)〉 is the state of the system at
some time t. That is, if |ψ(t0)〉 is the state of the system at time t0, the Schrödinger
equation tells you that, for time-independent Hamiltonians, there is an operator

U(t, t0) = e−iĤ(t−t0) , (4.66)

called the time evolution operator, such that the initial state evolves in time accord-
ing to

|ψ(t0)〉 7→ |ψ(t)〉 = U(t, t0)|ψ(t0)〉 . (4.67)

49

Exercise 4.21. Show that |ψ(t)〉 = e−iĤ(t−t0)|ψ(t0)〉 is, indeed, a solution to the
Schrödinger equation (4.65).

The idea of quantum simulation, also known as Hamiltonian simulation, consists
of finding a quantum circuit (built, of course, from elementary gates) matching as
accurately as possible the time-evolution operator of the real physical system. Here
we will only discuss the simulation of the time-evolution operator and assume that
we know how to create an n-qubit state |Q〉 that reproduces the initial state vector
|ψ(t0)〉 of the system, |ψ(t0)〉 = |Q〉.
To start with, suppose the simplest case of a two-level quantum system with Hamil-

tonian Ĥ = Ĥq1. The matrix representation of the Hamiltonian in the computational
basis is

Ĥq1 =

[

H00 H01

H10 H11

]

; (4.68)

where, because Ĥ is Hermitian, H01 = H∗
10. Now, since we know that any complex

2 × 2 matrix can be written as a linear combination of the Pauli matrices and the
identity matrix, then

Ĥq1 =
∑

A

hA σA , (4.69)

where A = I,X, Y, Z and, because of the hermicity of the Hamiltonian, hA ∈ R.

For the Hamiltonian of a 2-qubit quantum system, we can use an analogous result
stating that any Hermitian 4 × 4 complex matrix can be written as a real linear
combination of the tensor product of Pauli matrices,

Ĥq2 =
∑

A,B

hAB σA ⊗ σB . (4.70)

Exercise 4.22. Write the matrices Ĥq1 and Ĥq2 as a linear combination of the Pauli
matrices, displaying explicitly the coefficients hA and hAB.

Similarly, the most general Hamiltonian for a physical system corresponding to an
n qubit is of the form

Ĥqn =
∑

A1,...,An

hA1...An
σA1
⊗ . . .⊗ σAn

, (4.71)

where A1, . . . , An = I,X, Y, Z and all the coefficients hA1...An
are real.

Let us now see some simple examples. Suppose we know that the Hamiltonian of
a two-level system has the form of the Pauli operator Z, that is, Ĥ = Ĥq1 = Z. If
|q〉 is associated to the initial state |ψ(t0)〉, the evolution of the physical system will
be described by |q〉 7→ U(t)|q〉 = e−iZt|q〉. We now recall that the elementary gate
Rz(θ) = e−iZθ/2, which implies that

U(t) = e−iZt = Rz(2t) . (4.72)

The quantum circuit that simulates the evolution of our physical system is then

|q〉 Rz(2t) |ω〉

Fig. 38

50

The state |ω〉 leaving the gate is assumed to perfectly match the final state |ψ(t)〉
of the real physical system we wanted to simulate.

Exercise 4.23. What if the Hamiltonian of the system is any of the other Pauli
operators? For instance, for Ĥ = X , show that the quantum circuit modelling the
time-evolution operator is

H Rz(2t) H

Fig. 39

To find a quantum circuit that simulates the evolution a 2 qubit is more difficult.
Suppose, for simplicity, that Ĥ = Ĥq2 = σA ⊗ σA, where A = I,X, Y, Z. The
time-evolution operator is then U(t) = e−iσA⊗σAt. By Taylor expansion,

U(t) = e−iσA⊗σAt = cos(t)I − i sin(t)σA ⊗ σA . (4.73)

Exercise 4.24. Prove the previous formula.

Exercise 4.25. What is the matrix representation of the operator U(t) = e−iσA⊗σAt?

If, as we are assuming, |ψ(t0)〉 = |q〉, then the time evolution of the system will be
given by,

U(t)|q2〉 = e−iσA⊗σAt
∑

i,j

αij |ij〉

= cos(t)
∑

i,j

αij |ij〉 − i sin(t)
∑

i,j

αijσA|i〉σA|j〉 . (4.74)

Exercise 4.26. Show that the time evolution operator U(t) = e−iZ⊗Zt can be
implemented by the circuit

⊕

Rz(2t)
⊕

Fig. 40. Circuit emulating U(t) = e−iZ⊗Zt.

Suppose now, more generally, a physical system modelled by an n qubit evolving
with U(t) = e−iσ⊗n

A t. Taylor expanding as before, we get that

U(t) = e−iσ⊗n
A = cos(t)I − i sin(t)σ⊗n

A . (4.75)

Exercise 4.27. What is the quantum circuit corresponding to U(t) = e−iZ⊗n

?
Compare your diagram with the circuit shown in Exercise 3.44.

51

Box 4.3. The Pauli group.

As you can easily verify, the product of two Pauli matrices is, up to a constant
that can be ±1 or ±i, another Pauli matrix.

Exercise 4.28. Prove that the Pauli matrices form a group.

The Pauli matrices and the 2× 2 identity matrix are said to form the single-
qubit Pauli group P1. To remember that there are constants ±1 and ±i
involved, the group is commonly denoted

P1 = {I,X, Y, Z;±1,±i} . (4.76)

We can be more economical and write P1 = {σA;±1,±i}, where it is under-
stood that A = I,X, Y, Z.
The 2-qubit Pauli group P2, which acts on 2 qubits, is

P2 = {σA ⊗ σB;±1,±i} , (4.77)

where A,B = I,X, Y, Z. An arbitrary element of P2 acts as follows,

(σA ⊗ σB)|q2〉 = (σA ⊗ σB)
(

∑

i,j

αij|i〉 ⊗ |j〉
)

=
∑

i,j

αij σA|i〉 ⊗ σB|j〉 (4.78)

In general, the Pauli group on n qubits, also known as the n-qubit Pauli group
for short, is denoted

Pn = {σA1
⊗ . . .⊗ σAn

;±1,±i} . (4.79)

The elements of a Pauli group are called Pauli operators. Sometimes we simply
write σA1

⊗ . . .⊗ σAn
= Gn. The following alternative notations can be used

to denote a Pauli group,

Pn = {σA;±1,±i}⊗n = {Gn;±1,±i} = P1
⊗n . (4.80)

It can be shown that, in general, any 2n × 2n complex matrix M can be
written as a linear combination

M =

4n
∑

r=1

arGr . (4.81)

Exercise 4.29. Show that any 4× 4 complex matrix is a linear combination
of tensor products σA ⊗ σB .

For example, for the Hamiltonian of an n qubit, instead of (4.71), we can
write

Ĥ =
4n
∑

r=1

hrGr , (4.82)

where the hermicity of the Hamiltonian implies that h†r = hr.

52

In the examples above, we have described the Hamiltonians of systems with very
simple and somehow unrealistic behaviours. To tackle more interesting situations,
we need more powerful methods. One of the simplest approaches is the so called
product formula simulation.
First, we start by writing the total Hamiltonian as a sum of operators,

Ĥ =

L
∑

l=1

Ĥl , (4.83)

where each Ĥl acts, at most, on k qubits. These individual terms are called k-local
Hamiltonians. We now divide the total time interval t into N subintervals, ∆t = t/N
(for simplicity, we are taking t0 = 0), and then use the product formula

e−i(A+B)t = e−iAte−iBt +O(‖[A,B]‖t2/N) , (4.84)

to finally obtain

U(t) = lim
N→∞

(

U(t/N)
)N

≈
(

U(t/N)
)N

=
(

e−iĤt/N
)N

=
(

e−i
∑L

l=1
Ĥlt/N

)N

=
(

e−iĤ1t/N . . . e−iĤLt/N
)N

+O
(

L
∑

l1,l2

‖[Ĥl1 , Ĥl2]‖t2/N
)

. (4.85)

Exercise 4.30. Prove the product formula (4.84).

If we have enough reasons to neglect the higher-order terms in (4.85), the evolution
of the initial state of the physical system will be given by

|ψ(t)〉 ≈
(L
∏

l=1

e−iĤlt/N

)N

|ψ(t0)〉 . (4.86)

Thanks to this approximation, we do not need to find a quantum circuit for the entire
time-evolution operator U(t), but for the more manageable short-time operators

Ul(t/N) = e−iĤlt/N . (4.87)

Depending on the accuracy of the approximation, we then expect

|ψ(t)〉 ≈
(L
∏

l=1

Ul(t/N)

)N

|qn〉 . (4.88)

5 Quantum Error Correction

Quantum computers are fragile objects, notably because their interactions with the
environment, for example, with external electromagnetic fields or tiny temperature
changes, produce undesirable perturbations that put at risk the performance of the
device and ultimately our confidence in the computation. Knowing that these per-
turbations are unavoidable, from the very early days of quantum computer science,

53

experts have been trying to build a theory to understand and have control over
them.
The interaction of a quantum system, in our case a qubit, with its environment,

can symbolically be written as follows,

|Q0〉|e0〉 U7−−→
∑

|Qt〉|et〉 . (5.1)

Here, |Q0〉 and |e0〉 are the initial states of the system and the environment, respec-
tively. At this point, we are assuming that there is no entanglement between them.
Since the quantum system is closed, even though it is a combination of two sub-
systems, according to the laws of quantum mechanics it evolves unitarily. As time
passes, however, the mutual interaction produces a final state that is entangled. The
state of the combined system at a later time is no longer a product state but an
entangled state that we symbolically indicate in (5.1) with the summation symbol.
The whole idea of quantum error correction (QEC) is precisely to detect and

correct the changes occurring in |Q0〉 due to the interaction with the environment.
Only with such a theory can quantum computer scientists guarantee that large-scale
quantum computers will ever be useful.

5.1 Entanglement with the Environment

When a classical bit interacts with its environment, for example, when it is trans-
ferred through a noisy channel (actually, all realistic channels are noisy to some
extent), the only effect the environment can have on the bit is to flip it. That is, if
the bit sent is b, b̄ may be received. This is the only type of error that must be taken
into account on a classical computing device. The way the environment interacts
with a qubit is more complex. Moreover, the environment not only modifies the
qubit, but in return it is affected by its interaction with the qubit.
Suppose that an instant before they start interacting, the qubit is in its most

general state |q〉 = α0|0〉 + α1|1〉 and the environment is in the state |e〉. At this
point, the composite system, single qubit plus environment, is not an entangled
state; that is, it is simply described by the tensor product |q〉|e〉. Now, if we denote
by U the unitary transformation associated with the evolution of the interacting
system, after a certain period of time we will have that

U(|0〉|e〉) = |0〉|e00〉+ |1〉|e01〉 , (5.2)

U(|1〉|e〉) = |0〉|e10〉+ |1〉|e11〉 ; (5.3)

or, in full form,

U(|q〉|e〉) = U
(

(α0|0〉+ α1|1〉)|e〉
)

= α0U(|0〉|e〉+ α1U(|1〉|e〉

= α0(|0〉|e00〉+ |1〉|e01〉) + α1(|0〉|e10〉+ |1〉|e11〉)

=
∑

i,j

αi|j〉|eij〉 . (5.4)

Now, since any 2 × 2 matrix acting on a single qubit can be written as a linear
combination of the Pauli operators I,X, Y, Z, we can rewrite this expression in a

54

more convenient form,

U(|q〉|e〉) = I|q〉|eI〉+X|q〉|eX〉+ Y |q〉|eY 〉+ Z|q〉|eZ〉
=

∑

A

σA|q〉|eA〉 , (5.5)

where A = I,X, Y, Z and, as usual, we use the shorthand notation σA = σA ⊗ I.

Exercise 5.1. How are the formulas (5.4) and (5.5) related?

Suppose now that we have a 2 qubit |q2〉 interacting with its environment |e〉. The
entangled system is described by the state vector

U(|q2〉|e〉) = U
(

(α00|0 0〉+ α01|0 1〉+ α10|1 0〉+ α11|1 1〉)|e〉
)

= I I |q2〉|eII〉+ I X |q2〉|eIX〉+ I Y |q2〉|eIY 〉+ I Z |q2〉|eIZ〉
+X I |q2〉|eXI〉+X X |q2〉|eXX〉+X Y |q2〉|eXY 〉+X Z |q2〉|eXZ〉
+ Y I |q2〉|eY I〉+ Y X |q2〉|eY X〉+ Y Y |q2〉|eY Y 〉+ Y Z |q2〉|eY Z〉
+ Z I |q2〉|eZI〉+ Z X |q2〉|eZX〉+ Z Y |q2〉|eZY 〉+ Z Z |q2〉|eZZ〉 .

Or, more simply,

U(|q2〉|e〉) =
∑

A,B

σA σB|q2〉|eAB〉 , (5.6)

It is clear that for a 3 qubit,

U(|q3〉|e〉) =
∑

A,B,C

σA σB σC |q3〉|eABC〉 , (5.7)

and for an n qubit,

U(|Q〉|e〉) =
∑

A1,...,An

σA1
. . . σAn

|Q〉|eA1...An
〉 . (5.8)

Since writing all the subscripts can easily become cumbersome, the following nota-
tion is usually used,

EA = σA1
. . . σAn

, (5.9)

where A = 1, . . . , 4n. These new objects are referred as error operators. Accordingly,
the basis state vectors of the environment’s Hilbert space are denoted

|eA〉 = |eA1...An
〉 . (5.10)

Employing this new notation,

U(|Q〉|e〉) =
∑

A

EA|Q〉|eA〉 . (5.11)

The whole goal of QEC is to identify these EA’s and reverse their action. For
instance, the equation (5.5) is telling us that, due to its interaction with the en-
vironment, a single qubit can stay unaffected (σA = I) but at the same time it is
prone to suffer from a bit flit (σA = X), a phase flip (σA = Z) and a combination
of the two (σA = Y ; remember that Y = iXZ).

55

Box 5.1. Open quantum systems.

In the previous sections we treated the qubits as almost perfectly isolated
quantum systems. We have only allowed them to interact with the gates,
which are also perfect quantum objects in the sense that they act on the qubits
as unitary transformations. However, the truth is that quantum computers
are not perfect quantum systems. For example, the medium through which
the qubits propagate to go from one gate to the other can affect the qubit
we want to transmit. In order to built real quantum computers, we need to
deal with these undesirable situations. The quantum mechanical subdiscipline
dealing with this type of phenomena is called “open quantum systems”. Since
this subject is not usually part of a conventional quantum mechanics course,
we will be very brief in our discussion.
The idea, thus, is to provide a mathematical description of the qubit where

it no longer behaves as an isolated quantum system with state vector evolving
unitarily, but as part of a larger quantum mechanical system that includes
other quantum objects affecting it. These external elements are generally
called the environment. For example, in the transmission of a qubit, the envi-
ronment may be the medium through which it propagates. The mathematical
description of the qubit interacting with its environment is given by the so
called density operator or density matrix formalism. In it, a quantum system
is not described by a unit state vector |Ψ〉, but by a density operator, or density
matrix, defined by ρΨ = |Ψ〉〈Ψ|. If the quantum system is a composite system,
say a qubit and its environment, this approach allows us to understand the
evolution of each of its interacting subsystems, in particular the qubit.
To begin with, let us assume that at some initial time the qubit and the

environment are not interacting (to be more precise, that they have never in-
teracted). The composite system |Ψ0〉 is thus simply described by the product
state |Q0〉|e0〉, where |Q0〉 and |e0〉 are the qubit and the environment initial
state vectors, respectively. After some time interacting, the composite state
evolves into an entangled state |Ψt〉,

|Ψ0〉 = |Q0 e0〉 7→ |Ψt〉 =
∑

A

EA|Q0 eA〉 , (5.12)

where we have used the shorthand notation EA = EA⊗ I and the |eA〉’s form
a basis for the Hilbert space of all possible final states of the environment.
The EA’s are the so called error operators. The description of the evolution
of the qubit in terms of the density operator formalism is as follows. Since
the initial state of the qubit is |Q0〉, the density operator is

ρQ0
= |Q0〉〈Q0| . (5.13)

Similarly, the density operator of the final composite system is

ρΨt
= |Ψt〉〈Ψt| =

∑

A,A′

EA|Q0 eA〉〈Q0 eA′ |E†
A′

=
∑

A,A′

EA|Q0〉〈Q0|E†
A′ ⊗ |eA〉〈eA′| . (5.14)

56

The density operator corresponding to the final state of the qubit is somehow
contained within ρΨt

. It is called the reduced density operator and it is given
by

ρQt
= treρΨt

= tre|Ψt〉〈Ψt| = tre
∑

A,A′

EA|Q0〉〈Q0|E†
A′ ⊗ |eA〉〈eA′ |

=
∑

A,A′

EA|Q0〉〈Q0|E†
A′tre|eA〉〈eA′| =

∑

A,A′

EA|Q0〉〈Q0|E†
A′δAA′

=
∑

A

EAρQ0
E†

A . (5.15)

That is, if the initial state of the qubit is ρQ0
= |Q0〉〈Q0|, after some time inter-

acting with the environment, it will evolve into the state ρQt
=

∑

AEAρQ0
E†

A.

5.2 Classical Error Correction

Classical computers are also subject to undesirable perturbations arising from their
interactions with the environment. Sometimes, for example, we want to send a bit b
and it turns out that at the other end of the wire a b̄ is received. We review here the
classical repetition code, one of the multiple ways computer scientists have invented
to protect classical information from the destructive effects of the environment. In
the last pages, we will see how a similar procedure can be applied to protect quantum
information.
Suppose we want to communicate a bit b through a noisy channel and we know

that there is a small probability p≪ 1 for the bit of getting flipped to b̄,

P (b̄) = p , P (b) = (1− p) . (5.16)

Since p≪ 1, it follows that P (b)/P (b̄)≫ 1.
The repetition code instructs us to send multiple copies of b if we want to decrease

the probability of receiving the wrong information. For example, instead of one bit
b, one can send three copies of b, that is, we send b b b rather than b. If every single
bit in the string b b b can get flipped with probability p, we can receive three, two,
one or no b’s. The corresponding probabilities are as follows,

P (3b, 0b̄) = (1− p)3 , (5.17)

P (2b, 1b̄) = 3(1− p)2p , (5.18)

P (1b, 2b̄) = 3(1− p)p2 , (5.19)

P (0b, 3b̄) = p3 . (5.20)

From here we deduce that

P (3b, 0b̄)

P (2b, 1b̄)
=

(1− p)3
3(1− p)2p =

1

3

P (b)

P (b̄)
. (5.21)

57

That is, if we send three b’s instead of one, the probability of receiving a string
with one bit flipped is reduced by a third. Moreover, and this is what is really
advantageous about using the repetition code, the relative probability for two bits
to get flipped at the same time is

P (3b, 0b̄)

P (1b, 2b̄)
=

(1− p)3
3(1− p)p2 =

1

3

(P (b)

P (b̄)

)2

. (5.22)

Therefore, the probability for two bits to get flipped simultaneously is very small.
It is even smaller for three bits,

P (3b, 0b̄)

P (0b, 3b̄)
=

(1− p)3
p3

=
(P (b)

P (b̄)

)3

. (5.23)

Exercise 5.2. To fix the ideas, substitute p = 10 and p = 100 in the previous
example.

Exercise 5.3. Generalize this discussion to a classical repetition code of N bits.
Consider both, an odd and an even number of repetitions.

From the previous analysis, we arrive at the following conclusion: if we receive two
or three b’s, is because the original bit string was b b b. In other words, we apply
the majority rule. Of course, we could also have received two or three b’s when the
original message was b̄ b̄ b̄; however, this is so unlikely that we simply ignore these
possibilities.

Exercise 5.4. For a repetition code of N bits, what is the maximum number of
flips that can occur for the code to give a correct result?

Hence, we will assume that, if we send the bit string b b b, we can receive b1 b2 b3,
where at most one of the bi’s will be flipped, i.e., b1 = b̄, b2 = b̄ or b3 = b̄. Equiv-
alently, we can say that out of the three initial bits, at least two will remain un-
changed: b1 = b2 = b3 = b, b1 = b2 = b 6= b3, b1 = b3 = b 6= b2 and b2 = b3 = b 6= b1.
The question now is: how do we know if the bits have been corrupted or not? Of
course, we can measure them to see if their values are b or b̄. But, we can also
use the following alternative method that does not require a direct measurement of
the bits. It only checks whether two bits have the same or opposite values. This
procedure, generally called parity check, works as follows:

if b1 = b2 , b3 = b1 = b2 ⇒ b1 b2 b3 = b b b ,

if b1 = b2 , b3 6= b1 = b2 ⇒ b1 b2 b3 = b b b̄ ,

if b1 = b3 , b2 6= b1 = b3 ⇒ b1 b2 b3 = b b̄ b ,

if b2 = b3 , b1 6= b2 = b3 ⇒ b1 b2 b3 = b̄ b b .

After detecting which of the bits has been flipped — if any — we reverse it to its
original value by applying to it a classical NOT gate.

58

5.3 Generalities on QEC Codes

Before the first quantum error-correcting codes were invented in the mid-nineties,
it was thought that quantum computers were impossible to realize in practice due
to the destructive nature of the interaction with the environment. Today, quantum
error correcting-codes are known to exist and QEC is a well-established subfield of
quantum computing. The general procedure we will follow here is summarized in
the following steps:

1. Starting with an n qubit state vector |Q〉, we create an extended product state
by simply adding m ancillary qubits (or ancillas),

|Q〉 7−→ |Q〉|0 . . . 0〉 = |Q〉anc . (5.24)

The ancillary qubits are added because we want to use a quantum repetition
code inspired by the classical version discussed in the previous subsection.

2. We then encode the information contained in the original qubit |Q〉 in the
extended state |Q〉anc. This is done by acting with a unitary transformation
Uenc on the extended state created in Step 1,

|Q〉anc 7−→ Uenc|Q〉anc = |Q〉enc . (5.25)

Of course, we need to find out the quantum circuit built from elementary gates
that implements the unitary Uenc. For the quantum repetition code we will
discuss here, this step is rather easy.

3. At this point, the error occurs:

|Q〉enc 7−→ E|Q〉enc = |Q〉E . (5.26)

I said “error”, and not “errors”, because, as for the classical repetition code,
we will assume that the probability for two errors to occur at the same time
is negligible.

4. Here comes the difficult part. We must design a quantum circuit R that detects
and corrects the error,

|Q〉E 7−→ R|Q〉E = |Q〉R . (5.27)

In fact, since we cannot measure directly the qubits without destroying the
superposition of states, the error is detected indirectly; for example, as we will
see, by parity check.

5. We then decode the encoded state by undoing what the encoding operator did,

|Q〉R 7−→ Udec|Q〉R = |Q〉anc . (5.28)

Since Udec = U−1
enc, this is telling us that we need to built another circuit similar

to the one corresponding to Uenc but performing the inverse operation.

6. Finally, we get rid of the ancillary qubits and recover the original state vector
|Q〉,

|Q〉anc 7−→ |Q〉 . (5.29)

59

5.4 Single Qubit Error Correction

Given a single qubit with state vector |q〉 and two ancillary qubits prepared in the
computational basis state |0〉, we let them pass through the following circuit,

|q〉

|0〉
⊕

|0〉
⊕

|q〉L

Fig. 41. Production of the logical qubit.

The outgoing state is,

|q〉anc = |q〉|0〉|0〉 = α0|0 0 0〉+ α1|1 0 0〉 7−→ α0|0 0 0〉+ α1|1 1 1〉 ≡ |q〉L . (5.30)

The state |q〉L, corresponding to |Q〉enc in (5.25), is called the logical qubit to dis-
tinguish it from the physical qubit |q〉 we had originally.
Note that, when we added the two ancillas |0〉|0〉 to the qubit |q〉, we extended the

Hilbert space from two to eight dimensions,

|q〉 ∈ Hq
∼= C

2 , |q〉anc ∈ Hqanc
∼= C

8 . (5.31)

Since it is in this extended Hilbert space that most of the error-correcting code we
will discuss operates, it is worth mentioning some of its most relevant properties.
Two basis vectors of the Hilbert space Hqanc

are |0 0 0〉 and |1 1 1〉. The other six
basis vectors can be chosen to be, as usual, |0 0 1〉, |0 1 0〉, |0 1 1〉, |1 0 0〉, |1 0 1〉 and
|1 1 0〉. Any vector |χ〉 ∈ Hqanc

will then be a linear combination of these basis
vectors,

|χ〉 = α000|0 0 0〉+ α001|0 0 1〉+ α010|0 1 0〉+ α011|0 1 1〉

+ α100|1 0 0〉+ α101|1 0 1〉+ α110|1 1 0〉+ α111|1 1 1〉

=
(

α000|0 0 0〉+ α111|1 1 1〉
)

+
(

α100|1 0 0〉+ α011|0 1 1〉
)

+
(

α010|0 1 0〉+ α101|1 0 1〉
)

+
(

α001|0 0 1〉+ α110|1 1 0〉
)

. (5.32)

The vectors in parentheses are contained in four mutually orthogonal subspaces of
Hqanc

,

F0 = {|0 0 0〉, |1 1 1〉} , F1 = {|1 0 0〉, |0 1 1〉} ,
F2 = {|0 1 0〉, |1 0 1〉} , F3 = {|0 0 1〉, |1 1 0〉} . (5.33)

Note that we have chosen the basis vectors of the subspace F1 so that they corre-
spond to the basis vectors of F0 with the first bit flipped, that is,

|1 0 0〉 = X I I |0 0 0〉 , |0 1 1〉 = X I I |1 1 1〉 . (5.34)

Similar, of course, for the basis vectors of F2 and F3.

60

It follows, then, that any vector in Hqanc
can be written as

|χ〉 = I I I
(

α000|0 0 0〉+ α111|1 1 1〉
)

+X I I
(

α100|0 0 0〉+ α011|1 1 1〉
)

+ I X I
(

α010|0 0 0〉+ α101|1 1 1〉
)

+ I I X
(

α001|0 0 0〉+ α110|1 1 1〉
)

. (5.35)

Now that we understand the basic geometry of the Hilbert space Hqanc
, let us

consider the effect of the environment. For a single qubit, we saw in (5.5) that,

|q〉 7−→
∑

A

σA|q〉 . (5.36)

However, since we have encoded the information of the single qubit |q〉 in the logical
qubit |q〉L given in (5.30), we have now to evaluate the effect of the environment on
each physical qubit of |q〉L.
In general, several errors can simultaneously occur on each physical qubit,

|q〉L =
∑

i

αi|i〉|i〉|i〉 7−→
∑

i

αi

∑

A

σA|i〉
∑

B

σB|i〉
∑

C

σC |i〉 , (5.37)

where σA, σB, σC = I,X, Y, Z. But, since we want to consider at most one error per
physical qubit,

|q〉L 7−→
∑

i

αi|i i i〉+
∑

i

αiσa|i〉|i〉|i〉+
∑

i

αi|i〉σb|i〉|i〉+
∑

i

αi|i〉|i〉σc|i〉 .

where σa, σb, σc = X, Y, Z and the first summation symbol takes into account the
possibility that nothing happens to the qubits. This expression is still too general.
In fact, it allows for errors of different nature and we are only interested in errors of
the same type. Hence,

|q〉L 7−→
∑

i

αi|i i i〉+
∑

i

αiσa|i〉|i〉|i〉+
∑

i

αi|i〉σa|i〉|i〉+
∑

i

αi|i〉|i〉σa|i〉 .

Finally, if we consider bit-flip errors, that is, σa = X , the corrupted qubit will be
described by the following state vector

|q〉L 7−→ |q〉E

=
∑

i

αi|i i i〉+
∑

i

αiX|i〉|i〉|i〉+
∑

i

αi|i〉X|i〉|i〉+
∑

i

αi|i〉|i〉X|i〉 . (5.38)

More explicitly,

|q〉E = α0|0 0 0〉+ α1|1 1 1〉+ α0|1 0 0〉+ α1|0 1 1〉
+ α0|0 1 0〉+ α1|1 0 1〉+ α0|0 0 1〉+ α1|1 1 0〉 . (5.39)

Remember that, actually, we do not know which physical qubit of the logical qubit
has been flipped. The goal is to identify and correct it. The circuit that does this
is the following:

61

|t1〉
⊕ ⊕

|t2〉
⊕ ⊕

|ω〉
|q3〉

Fig. 42. Three-qubit parity check.

As a matter of fact, the auxiliary qubits |t1〉 and |t2〉 introduced in Figure 42 need
to be in the state |0〉. However, for practice, let us first consider the most general
case,

|q3〉|t1〉|t2〉 =
∑

i,j,k,l′,m′

αijkt1,l′t2,m′ |i j k〉|l′〉|m′〉

CNOT117−−−−−−→
∑

i,j,k,l′,m′

αijkt1,l′t2,m′ |i j k〉|l′ ⊕ i〉|m′〉

CNOT217−−−−−−→
∑

i,j,k,l′,m′

αijkt1,l′t2,m′ |i j k〉|l′ ⊕ i⊕ j〉|m′〉

CNOT227−−−−−−→
∑

i,j,k,l′,m′

αijkt1,l′t2,m′ |i j k〉|l′ ⊕ i⊕ j〉|m′ ⊕ j〉

CNOT327−−−−−−→
∑

i,j,k,l′,m′

αijkt1,l′t2,m′ |i j k〉|l′ ⊕ i⊕ j〉|m′ ⊕ j ⊕ k〉 .

Now, since we want |t1〉 = |t2〉 = |0〉, we substitute t1,0 = t2,0 = 0 and t1,1 = t2,1 = 1
in the previous result, giving

|q3〉|0〉|0〉 7→
∑

i,j,k

αijk|i j k〉|1⊕ i⊕ j〉|1⊕ j ⊕ k〉

= α000|0 0 0〉|1⊕ 0⊕ 0〉|1⊕ 0⊕ 0〉+ α001|0 0 1〉|1⊕ 0⊕ 0〉|1⊕ 0⊕ 1〉
+ α010|0 1 0〉|1⊕ 0⊕ 1〉|1⊕ 1⊕ 0〉+ α011|0 1 1〉|1⊕ 0⊕ 1〉|1⊕ 1⊕ 0〉

+ α100|1 0 0〉|1⊕ 1⊕ 0〉|1⊕ 0⊕ 0〉+ α101|1 0 1〉|1⊕ 1⊕ 0〉|1⊕ 0⊕ 1〉

+ α110|1 1 0〉|1⊕ 1⊕ 0〉|1⊕ 1⊕ 0〉+ α111|1 1 1〉|1⊕ 1⊕ 1〉|1⊕ 1⊕ 1〉

=
(

α010|0 1 0〉+ α101|1 0 1〉
)

|0 0〉+
(

α100|1 0 0〉+ α011|0 1 1〉
)

|0 1〉

+
(

α001|0 0 1〉+ α110|1 1 0〉
)

|1 0〉+
(

α000|0 0 0〉+ α111|1 1 1〉
)

|1 1〉

= I X I
(

α010|0 0 0〉+ α101|1 1 1〉
)

|0 0〉+X I I
(

α100|0 0 0〉+ α011|1 1 1〉
)

|0 1〉

+ I I X
(

α001|0 0 0〉+ α110|1 1 1〉
)

|1 0〉+ I I I
(

α000|0 0 0〉+ α111|1 1 1〉
)

|1 1〉 .

Finally, since the arbitrary qubit |q3〉 used above is indeed |q〉E given explicitly in
(5.38), we must take

α010 = α100 = α001 = α000 = α0 ,

α101 = α011 = α110 = α111 = α1 .

62

After substituting, we get

|q〉E|0 0〉 7−→ |q〉R (5.40)

= I X I |q〉L|0 0〉+X I I |q〉L|0 1〉+ I I X |q〉L|1 0〉+ I I I |q〉L|1 1〉 .

We now measure the auxiliary qubits and do the following:

if the measurement gives |0〉|0〉, we apply I X I ,
if the measurement gives |0〉|1〉, we apply X I I ,
if the measurement gives |1〉|0〉, we apply I I X ,
if the measurement gives |1〉|1〉, we apply I I I .

(5.41)

Regardless of the measurement outcome, the procedure (5.41) will always result in
the state vector |q〉L. We finally get rid of the ancillary qubits by using the following
circuit,

⊕

⊕

Fig. 43. Decoding gate.

Indeed, the outgoing state is,

|q〉L = α0|0 0 0〉+ α1|1 1 1〉 7−→ α0|0〉+ α1|1〉 = |q〉 . (5.42)

We have provided a complete description of the bit flip error-correcting code. How-
ever, as equation (5.37) shows, many other errors can occur to the logical qubit |q〉L.
The treatment of the general case will be the subject of future notes.

|q〉

|0〉 ⊕

|0〉
⊕

Error
gate |ω〉E

Fig. 44. The error gate.

6 Bibliography

If you think you need additional supporting material, maybe because an idea or
calculation in my notes is not clear enough, consult the book by Kaye et al. It is
a bit more elementary and it is very well-written. A textbook at the same level as
these notes is Nielsen & Chuang, which is the classic reference on the subject. In
addition to these books, you may find useful the free online resources I list below.
In particular, the notes by Preskill are worth studying, especially because they were

63

written from the viewpoint of a theoretical physicist and the video lectures can be
found online. Finally, I highly recommend that you watch the online lectures by
Nathan Wiebe.

[1] S. Aaronson, “Introduction to Quantum Information Science: Lecture Notes”.

[2] A. Ekert, “Introduction to Quantum Computation”.

[3] S. Girvin, “Introduction to Quantum Error Correction and Fault Tolerance”.

[4] R. Jozsa, “Quantum Information and Computation”.

[5] P. Kaye, R. Laflamme & M. Mosca, An Introduction to Quantum Computing.

[6] E. Knill et al., “Introduction to Quantum Information Processing”.

[7] S. Lloyd, “Quantum Information Science”.

[8] M. Mosca, “Quantum Algorithms”.

[9] M. Nielsen & I. Chuang, Quantum Computation and Quantum Information.

[10] J. Preskill, “Quantum Computation: Lecture Notes”.

[11] A. Steane, “Quantum Computing”.

[12] R. de Wolf, “Quantum Computing: Lecture Notes”.

64

Index

Rl gate, 22
π/8 gate, 15√
NOT gate, 15

k-local Hamiltonians, 53

Algorithm, 33
Ancillary qubits, 59

Balanced function, 35, 38
Bell basis, 47
Bell states, 47
Binary system, 4
Bit, 4
Bit flip gate, 13
Bit string, 4
Black box, 35
Bloch sphere, 6
Boolean function, 10

CCNOT gate, 28
Circuit diagram (classical), 10
Circuit model of computation

(classical), 10
Classical repetition code, 57
Clifford gate, 15
CNOT gate, 22
Computational basis, 5, 7, 9
Computer, 3
Constant function, 34, 38
Control qubit, 20
Control qubit, first, 28
Control qubit, second, 28
Controlled gate, 20
Controlled-U gate, 20
Controlled-V gate, 20
Controlled-X gate, 22
Controlled-Z gate, 22
Controlled-controlled NOT gate, 28
Controlled-NOT gate, 22
Controlled-SWAP gate, 24
Cryptography, 41
CSWAP gate, 24

Density operator (matrix), 56
Deutsch’s algorithm, 34
Deutsch-Jozsa’s algorithm, 38

Entangled state, 8

Environment, 56
EPR pair, 47
Error operator, 55, 56

Fourier basis, 45

Gate (classical logic), 10
Gate (quantum), 11, 18
GHZ state, 8

Hadamard basis, 5
Hadamard gate, 14, 16
Hamiltonian operator, 49
Hamiltonian simulation, 50

Logical qubit, 60

Majority rule, 58
Measuring qubit, 31
Multiple or n qubit, 9

NOT gate (classical), 10
NOT gate (quantum), 13

Oracle, 35

Parity check, 58
Pauli group, 52
Pauli matrices, 12
Pauli operators, 52
Period, 43
Phase flip gate, 15
Physical qubit, 60
Product formula, 53
Product formula simulation, 53
Product state, 8

Quantum error correction, QEC, 54
Quantum Fourier transform, QFT, 45
Quantum phase estimation, 31
Quantum simulation, 50
Quantum teleportation, 48
Qubit, 4
Query complexity, 35

Reduced density operator, 57
Relative phase gate, 15

S gate, 15
Schrödinger’s equation, 49
Shor’s algorithm, 41

65

Single qubit, 1 qubit, 4
Single-qubit gate, 11

Superdense coding, 48
SWAP gate, 23

T gate, 15
Target qubit, 20

Tensor product, 7, 19
Time evolution operator, 49
Toffoli gate, 28

Unitary, 11
Universal set of gates (classical), 10

XOR oracle, 35

66

Notes for a Second Course on

Quantum Computing for Physicists

Oswaldo Zapata

Abstract

In these notes I continue the course on quantum computing I started in
arXiv:2306.09388. I begin by introducing the density operator formalism as
an alternative to the state vector formalism and focus on entangled quantum
systems. After a short presentation of information theory, both the classical
and quantum versions, I present a couple of quantum algorithms, in par-
ticular, the variational quantum eigensolver algorithm, an algorithm that is
expected to be implemented in near-term quantum computers. I conclude
with some advanced topics on quantum error correction that I did not cover
in my precedent monograph. These notes are intended for students and pro-
fessional physicists who have already studied my earlier notes or a similar
introduction to quantum computing.

1 Introduction 2

2 The Density Operator Formalism 2
2.1 Density Operators . 3
2.2 Multipartite Systems . 9
2.3 State Evolution . 13
2.4 Measurement . 16

3 Information 18
3.1 Classical Information Theory . 20
3.2 Quantum Information Theory . 28

4 Algorithms and Secure Communication 33
4.1 Quantum Phase Estimation . 34
4.2 The Variational Quantum Eigensolver 43
4.3 Quantum Cryptography . 46

4.3.1 BB84 Protocol . 46

5 Error Correction and Fault Tolerance 48
5.1 Single-Qubit Quantum Channels . 48
5.2 Stabilizers Circuits . 51
5.3 Stabilizer QEC Codes . 56
5.4 Fault-Tolerant QEC . 59

6 Bibliography 59

https://arxiv.org/abs/2306.09388

1 Introduction

These notes are a natural continuation of my previous review article on quantum
computing (arXiv:2306.09388, from now on simply referred as QC1). If you studied
it, or are familiar with a similar introduction to quantum computing, you should be
able to read and understand the present notes with minimum effort. They are not
long and I have tried my best to write them in the most pedagogical manner. The
many exercises interspersed within the text will help you fix the new concepts and
develop your mathematical skills.
In Section 2, I present the density operator formalism and explain how it helps

describe subsystems of larger quantum systems. Since information theory, as under-
stood by computer scientists, is not a subject usually contained in a standard physics
curriculum, in Section 3 I give a brief overview of classical as well as quantum infor-
mation theory. Scientists believe that quantum computers will help us understand
better many complex systems, in particular atoms, molecules and solids. In Section
4, I present two algorithms that have been developed specifically to deal with these
practical situations: the quantum phase estimation algorithm and the variational
quantum eigensolver. In this section I also introduce the first ever invented secure
communication protocol that uses the principles of quantum mechanics, known as
the BB84 protocol. In Section 5, I conclude with a brief discussion on quantum
error correction and how the stabilizer theory of quantum mechanics applies to it.
Here is a brief historical summary of the topics discussed in these notes. The den-

sity operator formalism was created by John von Neumann in 1929. It is the result
of von Neumann’s desire to explain realistic situations where the quantum state of
a system cannot be known with precision due to its interaction with other quantum
systems. Quantum information theory is an adaptation to the quantum world of
the seminal ideas introduced in 1948 by Claude Shannon in a classical context. The
quantum phase estimation algorithm was proposed by Alexei Kitaev in 1996 and
the variational quantum eigensolver algorithm by Alberto Peruzzo and collabora-
tors in 2014. In the mid 90s the concept of fault-tolerant quantum computation
was independently formulated by Peter Shor and Alexei Kitaev. Daniel Gottesman,
also by the end of the last century, was the first to apply the stabilizer formalism to
quantum error correction.
If you want to contact me regarding this paper, maybe you found a couple of

typos or simply because you want to share your feedback, please send me an email
at zapata.oswaldo@gmail.com. Your comments will be welcomed.

2 The Density Operator Formalism

The mathematical framework we introduce in this section is an alternative to the
conventional state vector formalism of quantum mechanics most of us learned in
college. The so called density operator (or density matrix) formalism of quantum
mechanics was especially developed by John von Neumann to study quantum sys-
tems that cannot be considered isolated from the rest of the world. In QC1, we did
not need it because most of our systems were isolated or, in the case of interaction
with their environments, we did managed to provide a state vector description (as in
Chapter 4 on quantum error correction). However, the circuit components created
by physicists, such as qubits, gates and measurement apparatuses, are far from ideal

2

https://arxiv.org/abs/2306.09388
mailto:zapata.oswaldo@gmail.com

and they always interact with their environments. Accordingly, we now revisit the
basic principles of quantum mechanics in this more realistic formalism.

2.1 Density Operators

We start our exposition with two common situations where the description provided
by the state vector formalism is incomplete.
To begin with, consider the Bell state

|β0⟩ =
1√
2

(
|0⟩|0⟩+ |1⟩|1⟩

)
=

1√
2

∑
i

|i⟩|i⟩ , (2.1)

(see QC1, Subsection 4.3). Since the state vector |β0⟩ describes a composite system
made of two single qubits, its Hilbert space H is the tensor product of the individual
Hilbert spaces, |β0⟩ ∈ H = Hq ⊗ Hq′ . Of course, we know that in addition to
entangled states, such as |β0⟩ itself, the Hilbert space H contains vectors associated
to non-entangled two-qubit systems. That is, if |q⟩ ∈ Hq and |q′⟩ ∈ Hq′ , there are
two-qubit systems for which the state vector is a simple product state, |q⟩⊗|q′⟩ ∈ H.
Thus, the Hilbert space H contains entangled and non-entangled states, of which
|β0⟩ is an example of the latter.
The problem with this mathematical description is that, despite the fact that the

vector |β0⟩ provides a complete description of the entangled two-qubit system, there
is no state vector description of each individual single qubit. You may argue that,
we do not need a state vector description of each individual single qubit because,
as soon as we observe one qubit in |i⟩, we know with certainty that the other qubit
is also in |i⟩. From the empirical point of view, thus, the measurement process
renders unnecessary an independent state vector description of each qubit. The
previous interpretation is how the entanglement of two single qubits is understood
in the context of the state vector formalism. However, from the theoretical point of
view, it is clear that this description is incomplete. This shortcoming becomes more
apparent when we deal with more complex situations. For example, as we will see
next, if we want to understand how a single qubit interacts with its environment.
Suppose a quantum system made of a single qubit surrounded by a large complex

system (the environment). The total system, qubit plus environment, is described
by a state vector

|Ψ⟩ =
∑
i,j

αij|i⟩|ei⟩ . (2.2)

Again, as for the Bell pair, we cannot find a state vector description of each sub-
system separately. However, similarly, if we measure the qubit in |i⟩, we know that
the environment is in the state |ei⟩. Conversely, if we could measure the state of the
environment, the result |ei⟩ would imply that the qubit is in |i⟩. Unfortunately, by
definition, the environment is so complex that we cannot make sense experimentally
of the state |ei⟩. Thus, the operational approach taken above for two entangled
single qubits cannot be used here. Therefore, the state vector formalism is rather
useless if we want to study two or more complex quantum systems in interaction.
The desire to understand the evolution in time of each individual qubit makes

it even more apparent the need for an alternative approach to the state vector
formalism. In the case of the Bell state |β0⟩, the interaction of the individual qubits
can be modeled by a unitary matrix U represented in the following diagram,

3

|0⟩ H

|0⟩
⊕ |β0⟩

Fig. 1. Creation of the |β0⟩ state.

that is,

|0⟩|0⟩ H⊗17−−−−→ CNOT7−−−−−→ U |0⟩|0⟩ = |β0⟩ . (2.3)

Something similar happens with the evolution of a single qubit interacting with its
environment (see QC1, Subsection 5.2),

|q⟩|e⟩ U7−−→
∑
i,j

αi|j⟩|eij⟩ . (2.4)

However, there is no description of the evolution of each subsystem separately. In
fact, it turns out that a state vector description of the time evolution of each sub-
system would imply a non-unitary matrix acting on them.
In the following pages we will see how the density operator formalism allows us

to describe a subsystem of an entangled quantum system ignoring everything that
does not form part of it. Before telling you how we can do that, though, we must
present the necessary physical ideas and mathematical tools of the density operator
formalism.
Imagine that you are in front of a black box containing a quantum system. From

the black box you receive an n qubit and you measure it. The information carried by
the qubit is all you know about the system in the box. In the state vector formalism,
the situation is described as follows. Before the measurement, the n qubit can be
represented by a state vector |Q⟩ in a Hilbert space HQ of dimension 2n. If {|Qs′⟩}
is a basis for HQ, the state vector |Q⟩ can be written as a linear superposition of
these basis vectors,

|Q⟩ =
2n∑

s′=1

αs′|Qs′⟩ . (2.5)

Now, suppose there is an apparatus that measures 2n independent observational
states of this particular quantum system. Let us denote them by {|Os⟩} and by HO

the Hilbert space they span. Quantum mechanics postulates that the probability of
measuring the system in the observational state |Os⟩ is given by

P (|Os⟩) = ps = |⟨Os|Q⟩|2 =
∣∣∣∑

s′

αs′⟨Os|Qs′⟩
∣∣∣2 . (2.6)

When the two bases {|Qs′⟩} and {|Os⟩} coincide, the qubit state can be written

|Q⟩ =
2n∑
s=1

αs|Os⟩ . (2.7)

If, moreover, the basis is orthonormal, that is, ⟨Os|Os′⟩ = δss′ , for any pair of indices
s, s′ = 1, . . . , 2n, the probability of measuring the qubit |Q⟩ in the state |Os⟩ is

ps =
∣∣∣∑

s′

αs′⟨Os|Os′⟩
∣∣∣2 = ∣∣∣∑

s′

αs′δss′
∣∣∣2 = |αs|2 . (2.8)

4

Thus, from an experimental point of view, a quantum system is described by a state
vector |Q⟩ in the Hilbert space HO of observational states {|Os⟩}. In particular, in
the computational basis {|x⟩},

|Q⟩ =
∑
x

αx|x⟩ , (2.9)

and P
(
|x⟩

)
= px = |αx|2 (see equation (2.27) of QC1).

Note that, this description assumes that we have a complete knowledge of the state
of the qubit |Q⟩, that is, that we know all the coefficients αs. However, in reality, we
do not know them; the only thing we can measure are the probabilities ps. In order
to take into consideration this experimental fact and, at the same time, preserve the
quantum superposition principle, it is, of course, incorrect to simply substitute αs

by
√
ps in (2.7).

The density operator formalism approaches the description of a quantum system
from another angle.
Instead of a single quantum system in a black box, now, imagine that you are in

front of an infinite number of black boxes, all of which contain identical copies of
the same quantum system. Moreover, suppose that every quantum system emits
an n qubit. A measurement will give again an observational state |Os⟩ belonging
to the Hilbert space HO spanned by all possible outcomes {|Os⟩}. The probability
that a qubit was emitted in the state |Os⟩ is again ps. The infinite black boxes
and the experimental probabilities ps provide a theoretical model for the quantum
system inside the box. The system is, thus, completely characterized by the only
experimental data allowed to us: the probability distribution {|Os⟩, ps}. Note that,
there is no probability amplitude αs, only ps. In statistical mechanics, an infinite
number of macroscopic systems used to model a probabilistic microscopic system is
known as a (statistical) ensemble.
When a statistical ensemble is prepared in such a way that there is only one

possible outcome, say |Qs⟩ with ps = 1, we say that the system is in a pure state.
On the contrary, when there are at least two possible outcomes, |Qs1⟩ and |Qs2⟩ with
ps1 ̸= ps2 , we say that the system is mixed (or that it is a mixture of pure states).
In the density operator formalism of quantum mechanics, the mathematical de-

scription of a quantum system is provided by the so called statistical or density
operator,

ρ =
∑
s

psΠs , (2.10)

where Πs : HQ → HQ is the projection operator over the observational state |Os⟩.
A convenient notation for the projector Πs is

Πs = |Os⟩⟨Os| . (2.11)

Using this expression for the projectors, the density operator becomes

ρ =
∑
s

ps|Os⟩⟨Os| . (2.12)

This notation is very practical because now we can easily see how the density op-
erator acts on quantum states in HQ. In fact, since the density operator is a map
ρQ : HQ → HQ, we can use the standard vector representation of a quantum system

5

to see how ρ operates on it. In general, for a state vector |Q⟩ ∈ HQ written as a
linear superposition of the basis vectors {|Qs′⟩} of HQ, we have

ρ|Q⟩ = ρ
∑
s′

αs′ |Qs′⟩ =
∑
s

ps|Os⟩⟨Os|
∑
s′

αs′ |Qs′⟩

=
∑
s,s′

psαs′|Os⟩⟨Os|Qs′⟩ . (2.13)

Now, if we choose for both, the observational Hilbert spaceHO and the qubit Hilbert
space HQ, the same orthonormal basis {|Os⟩}, the above relation reduces to

ρ|Q⟩ = ρ
∑
s′

αs′|Os′⟩ =
∑
s,s′

psαs′|Os⟩ δss′ =
∑
s

psαs|Os⟩ . (2.14)

When the qubit is known to be in an observational state of the apparatus, |Q⟩ =
|Os′⟩,

ρ|Os′⟩ =
∑
s

ps|Os⟩⟨Os|Os′⟩ =
∑
s

ps|Os⟩ δss′ = ps′ |Os′⟩ , (2.15)

and
⟨Os′ |ρ|Os′⟩ = ps′ . (2.16)

Exercise 2.1. Show that pure states are the only ones for which ρ2 = ρ.

Having defined the density operator, we now need to explain how the remaining
postulates of quantum mechanics, such as time evolution and measurement, must
be adapted to this new framework. We will do this in the following pages. Before
that, though, let us see some properties of the density operator and consider some
simple examples.
The trace of a density operator, that is, the sum of all its diagonal elements, is

Tr ρ =
∑
s

⟨Os|ρ|Os⟩ =
∑
s

ps = 1 . (2.17)

Therefore, the density operator has unit trace. Note that this property corresponds
to the normalization condition of the state vector formalism.
That the density operator is Hermitian is also easy to show. Just remember that,

by definition, projectors are Hermitian operators, hence,

ρ† =
∑
s

p∗s
(
|Os⟩⟨Os|

)†
=

∑
s

ps|Os⟩⟨Os| = ρ . (2.18)

Moreover, since Hermitian operators are diagonalizable, we can always find a basis
of orthonormal eigenvectors {es} to write a density operator as

ρ =
∑
s

ps|es⟩⟨es| . (2.19)

This is called the eigenvalue decomposition of the density operator because,

ρ|es⟩ =
∑
s′

ps′|es′⟩⟨es′|es⟩ =
∑
s′

ps′|es′⟩ δss′ = ps|es⟩ . (2.20)

From here, it follows that
ps = ⟨es|ρ|es⟩ . (2.21)

6

Exercise 2.2. Show that
ps = Tr

[
ρ|es⟩⟨es|

]
. (2.22)

Finally, because probabilities are equal or greater than zero, it can be proved that
density operators are also positive (semi-definite),

⟨Q|ρ|Q⟩ ≥ 0 , (2.23)

where |Q⟩ is any state vector in HQ. For instance, if we write |Q⟩ in the orthonormal
basis {es} of HO,

⟨Q|ρ|Q⟩ =
∑
s,s′

α∗
sαs′⟨es|ρ|es′⟩ =

∑
s,s′

α∗
sαs′⟨es|ps′ |es′⟩

=
∑
s,s′

α∗
sαs′ps′⟨es|es′⟩ =

∑
s,s′

α∗
sαs′ps′δss′

=
∑
s

α∗
sαsps =

∑
s

p2s ≥ 0 . (2.24)

Exercise 2.3. Prove that density operators are positive, regardless of the basis
chosen for HQ

To sum up, the density operator of a quantum state has unit trace, is Hermitian
and is positive semi-definite. It can be proved that the converse is also true: any
unit trace operator, which is Hermitian and positive semi-definite, is the density
operator of some quantum state. Since the density operator contains all the physical
information we can have about a quantum system, we often say that ρ is the quantum
state. Thus, in the density operator formalism, the density operator ρ is the state of
the system just like |Q⟩ is the state in the state vector formalism. Instead of state
vector, we now talk about state operator .
As we said in the introduction to this section, the real power of the density opera-

tor formalism is best shown when we are confronted with complex quantum systems.
However, simple situations can also be understood using this framework. For ex-
ample, we may be interested in the mathematical description of an individual qubit
in a Bell pair or the effect of the environment on a single qubit. In both cases, we
need to describe the individual qubits in the language of the density operator.
The state operator of a single qubit, in general, is given by

ρq =
2∑

s=1

ps|Os⟩⟨Os| , (2.25)

where {|O1⟩, |O2⟩} is a basis for HO. For instance, the observational states can be
the basis states {|0⟩, |1⟩} or {|+⟩, |−⟩}. Of course, in general, {|O1⟩, |O2⟩} does not
need to be an orthonormal basis.
The elements of the density matrix of a single qubit are then given by

[ρq]s′s′′ = ⟨Os′|ρq|Os′′⟩ =
∑
s

ps⟨Os′|Os⟩⟨Os|Os′′⟩ . (2.26)

Let see how this applies to a concrete example.

7

Suppose there is a source of single qubits and the measurements have been made
along the computational basis vectors |0⟩ and |1⟩. Denoting the probability distri-
bution by {|0⟩, p0 ; |1⟩, p1 = 1− p0}, we have that the state operator is

ρq = p0|0⟩⟨0|+ (1− p0)|1⟩⟨1| . (2.27)

Representing the basis vectors by the usual column vectors, |0⟩ = [1 0]T and |1⟩ =
[0 1]T , the corresponding projectors are

Π|0⟩ = |0⟩⟨0| =
[
1
0

] [
1 0

]
=

[
1 0
0 0

]
, (2.28)

Π|1⟩ = |1⟩⟨1| =
[
0
1

] [
0 1

]
=

[
0 0
0 1

]
. (2.29)

The density matrix for the qubit is, then,

ρq =

[
p0 0
0 1− p0

]
. (2.30)

Alternatively, the elements of the density matrix in the computational basis {|0⟩, |1⟩}
for a single qubit can be found by using (2.26),

[ρq]ij = ⟨i|ρq|j⟩ =
∑
k

pk⟨i|k⟩⟨k|j⟩ , (2.31)

that is,

ρq =

[
⟨0|ρq|0⟩ ⟨0|ρq|1⟩
⟨1|ρq|0⟩ ⟨1|ρq|1⟩

]
, (2.32)

which, of course, is equal to (2.30).
There is a geometric representation of single-qubit states that sometimes is use-

ful (especially for quantum computer programs). Since any 2 × 2 complex matrix
can always be written as a (real) linear combination of the identity and the Pauli
matrices, we can write

ρq = cII +
∑
a

caσa =
1

2
I +

1

2

∑
a

Baσa . (2.33)

In the last expression we have simply chosen cI = 1/2 and wrote ca = Ba/2.

Exercise 2.4. Show that ρq satisfies all the properties of a density operator.

More conveniently, we can write

ρq =
1

2

(
I +B · σ

)
. (2.34)

The real vector B ∈ R3 is known as the Bloch vector . We indicate the dependence
on this vector by writing ρq = ρq

(
B
)
. In Cartesian coordinates,

ρq = ρq
(
B = [Bx By Bz]

T
)
. (2.35)

Exercise 2.5. Write (2.34) explicitly in terms of the components of the Bloch vector.

8

Exercise 2.6. Show that the density matrix ρq of Exercise 2.5 has eigenvalues
(1± ∥B∥)/2.

Since the eigenvalues of a density operator are always equal to or greater than zero,
we have that ∥B∥ ≤ 1. Thus, geometrically speaking, the state of a single qubit can
be represented by a vector inside or on the boundary of a closed unit ball. This unit
ball is called the Bloch ball . The Bloch ball differs from the Bloch sphere because
the former includes the points inside the closed unit ball, ∥B∥ < 1, whereas the
latter consists only of points on the surface, ∥B∥ = 1. Points on the Bloch sphere
represent single-qubit pure states.
Since points on a sphere can be parameterized by the spherical angles (θ, ϕ), there

is a one-to-one correspondence between single-qubit state vector |q(θ, ϕ)⟩ and unit
Bloch vectors. For example, for B = [0 0 1]T ,

ρq
(
B = [0 0 1]T

)
=

1

2
(I + σz) =

[
1 0
0 0

]
=

[
1 0

] [1
0

]
= |0⟩⟨0| . (2.36)

Thus, we conclude that there is a correspondence

B = [0 0 1]T ←→ |q(θ = 0, ϕ)⟩ = |0⟩ . (2.37)

Exercise 2.7. Show that

B = [1 0 0]T ←→ |q(θ = π/2, ϕ = 0)⟩ = |+⟩ , (2.38)

B = [0 1 0]T ←→ |q(θ = π/2, ϕ = π/2)⟩ =
(
|0⟩+ i|1⟩

)
/
√
2 . (2.39)

Exercise 2.8. What are the Bloch vectors corresponding to |1⟩ and |−⟩?

Finally, note that, if B = [0 0 0]T , then

ρq
(
B = [0 0 0]T

)
=

1

2
I =

1

2

[
1 0
0 0

]
+

1

2

[
0 0
0 1

]
=

1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1| . (2.40)

This means that the probability distribution is {|0⟩ , 1/2; |1⟩ , 1/2}. In other words,
at the center of the Bloch ball is the mixed state with equal probability of being
measured at |0⟩ or |1⟩.

2.2 Multipartite Systems

A bipartite system is a composite quantum system consisting of two physical sub-
systems. In the state vector formalism, we describe it by a vector in the tensor
product Hilbert space H = HQ ⊗HQ′ , where HQ and HQ′ are the Hilbert spaces of
the subsystems Q and Q′, respectively. For example, the state of a two-qubit system
is described by a vector |q2⟩ = |q⟩qq′ ∈ Hq2 = Hq ⊗Hq′ . A multipartite system is a
composite quantum system made of multiple physical subsystems. For example, an
n qubit, with n ≥ 2, is a multipartite system. Atoms and molecules, as well as the
whole universe, are multipartite systems. From the physical point to view, the most
salient feature of these systems is that they are highly entangled. Our goal here
is to understand how the density operator formalism can be used to describe these

9

types of systems and, most importantly, their individual parts. Instead of explaining
the most general case, however, we will illustrate the procedure by presenting the
already familiar case of the two-qubit system.
In the usual state vector formalism, the state of a two-qubit system, ideally iso-

lated from the rest of the universe, can be written as a linear superposition of the
computational basis vectors {|i i′⟩} of Hq2 , where i, i

′ = 0, 1,

|q2⟩ =
∑
i,i′

αii′|i i′⟩ . (2.41)

(see equation (2.14) of QC1). The density operator of this pure state is given by

ρq2 = ρqq′ = |q2⟩⟨q2| =
(∑

i,i′

αii′ |i i′⟩
)(∑

j,j′

α∗
jj′⟨j j′|

)
=

∑
i,j,i′,j′

αii′α
∗
jj′|i i′⟩⟨j j′| . (2.42)

Exercise 2.9. Show that

αii′α
∗
jj′ = ⟨i i′|ρqq′ |j j′⟩ . (2.43)

Using this result and defining the matrix elements

[ρqq′]ii′, jj′ = αii′α
∗
jj′ = ⟨i i′|ρqq′ |j j′⟩ , (2.44)

we arrive at
ρqq′ =

∑
i,j,i′,j′

[ρqq′]ii′, jj′|i i′⟩⟨j j′| . (2.45)

Its matrix representation in the computational basis of Hq2 is,

ρqq′ =


⟨0 0|ρqq′ |0 0⟩ ⟨0 0|ρqq′|0 1⟩ ⟨0 0|ρqq′|1 0⟩ ⟨0 0|ρqq′ |1 1⟩
⟨0 1|ρqq′ |0 0⟩ ⟨0 1|ρqq′|0 1⟩ ⟨0 1|ρqq′|1 0⟩ ⟨0 1|ρqq′ |1 1⟩
⟨1 0|ρqq′ |0 0⟩ ⟨1 0|ρqq′|0 1⟩ ⟨1 0|ρqq′|1 0⟩ ⟨1 0|ρqq′ |1 1⟩
⟨1 1|ρqq′ |0 0⟩ ⟨1 1|ρqq′|0 1⟩ ⟨1 1|ρqq′|1 0⟩ ⟨1 1|ρqq′ |1 1⟩

 . (2.46)

The density operator formalism states that the density operator of a quantum
subsystem is obtained by taking the partial trace of the density operator of the
entire system. They are known as reduced density operators. For example, the state
operator of the first qubit is the reduced density operator of the two-qubit system
(2.42),

ρq = Trq′ρqq′ =
∑
i′

⟨ · i′|ρqq′ | · i′⟩ . (2.47)

The dots in the first positions indicate that we leave untouched the first qubit and
trace out over the second Hilbert space. Similarly, the density operator description
of the second qubit is,

ρq′ = Trqρqq′ =
∑
i

⟨ i · |ρqq′| i · ⟩ . (2.48)

10

The dots in the second positions now indicate that we leave untouched the second
qubit and trace out over the first Hilbert space.
The matrix elements of the reduced density matrix of the first qubit, in the com-

putational basis of Hq, are given by

[ρq]ij = ⟨ i · |ρq| j · ⟩ = ⟨ i · |
∑
i′

⟨ · i′|ρqq′ | · i′⟩| j · ⟩

=
∑
i′

⟨i i′|ρqq′ |j i′⟩ =
∑
i′

[ρqq′]ii′,ji′ . (2.49)

That is,

[ρq]ij = ⟨i 0|ρqq′ |j 0⟩+ ⟨i 1|ρqq′|j 1⟩ = [ρqq′]i0,j0 + [ρqq′]i1,j1 , (2.50)

or, more explicitly,

ρq =
1

2

[
⟨0 0|ρqq′ |0 0⟩+ ⟨0 1|ρqq′|0 1⟩ ⟨0 0|ρqq′ |1 0⟩+ ⟨0 1|ρqq′|1 1⟩

⟨1 0|ρqq′ |0 0⟩+ ⟨1 1|ρqq′|0 1⟩ ⟨1 0|ρqq′|1 0⟩+ ⟨1 1|ρqq′ |1 1⟩

]
. (2.51)

Thus, given the matrix density of a two-qubit system (2.46), it suffices to look at
this matrix and add the appropriate elements to find the reduced density matrix ρq.

Exercise 2.10. Find the matrix elements of the reduced density matrix of the
second qubit.

As an example, consider again the Bell state |β0⟩ given in (2.1). Its density oper-
ator, in the computational basis of Hq2 , is

ρβ0 = |β0⟩⟨β0|

=
1

2

(
|0⟩|0⟩⟨0|⟨0|+ |0⟩|0⟩⟨1|⟨1|+ |1⟩|1⟩⟨0|⟨0|+ |1⟩|1⟩⟨1|⟨1|

)
. (2.52)

Recall that in our notation, |i⟩|i′⟩ = |i i′⟩ and ⟨j|⟨j′| = ⟨j j′|. Thus, the reduced
density matrix describing the second qubit is,

ρq′ = Trqρβ0 =
∑
i=0,1

⟨i|⟨ · |ρβ0|i⟩| · ⟩

= ⟨0|⟨ · |ρβ0 |0⟩| · ⟩+ ⟨1|⟨ · |ρβ0|1⟩| · ⟩ . (2.53)

The explicit calculation gives,

ρq′ =
1

2

(
⟨0|0⟩|0⟩⟨0|0⟩⟨0|+ ⟨0|0⟩|0⟩⟨1|0⟩⟨1|+ ⟨0|1⟩|1⟩⟨0|0⟩⟨0|+ ⟨0|1⟩|1⟩⟨1|0⟩⟨1|

)
+

1

2

(
⟨1|0⟩|0⟩⟨0|1⟩⟨0|+ ⟨1|0⟩|0⟩⟨1|1⟩⟨1|+ ⟨1|1⟩|1⟩⟨0|1⟩⟨0|+ ⟨1|1⟩|1⟩⟨1|1⟩⟨1|

)
=

1

2

(
|0⟩⟨0|+ |1⟩⟨1|

)
. (2.54)

Do not forget that this is an operator on the second qubit, ρq′ : Hq′ 7→ Hq′ . In matrix
form,

ρq′ =
1

2

[
1 0
0 1

]
. (2.55)

11

Similarly, it is straightforward to find that

ρq =
1

2

(
|0⟩⟨0|+ |1⟩⟨1|

)
=

1

2

[
1 0
0 1

]
, (2.56)

where ρq : Hq 7→ Hq.

Exercise 2.11. Show that,

ρβ0 =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 . (2.57)

From here, how do you get the reduced density matrices (2.55) and (2.56)?

Exercise 2.12. Repeat these calculations for the other Bell states (see QC1, Sub-
section 4.3).

More generally, we could have considered a bipartite system QQ′ made of two
subsystems Q and Q′. In this case, we denote by {|I⟩} the orthonormal basis of the
Hilbert space HQ, with I = 1, 2, . . . , dimHQ, and by {|I ′⟩} that of HQ′ , with I ′ =
1, 2, . . . , dimHQ′ . Any observational state |Ψs⟩, with s = 1, 2, . . . , dimHQ×dimHQ′ ,
will be described by a state vector

|Ψs⟩ =
dimHQ∑
I=1

dimHQ′∑
I′=1

αs,II′ |I⟩|I ′⟩ =
∑
I,I′

αs,II′ |I I ′⟩ . (2.58)

The state operator of the bipartite system is then

ρQQ′ =
∑
s

ps|Ψs⟩⟨Ψs| =
∑
s

ps
∑
I,I′

αs,II′ |I I ′⟩
∑
J,J ′

α∗
s,JJ ′⟨J J ′|

=
∑

I,J,I′,J ′

(∑
s

ps αs,II′α
∗
s,JJ ′

)
|I⟩⟨J | ⊗ |I ′⟩⟨J ′|

=
∑

I,J,I′,J ′

[ρQQ′]II′,JJ ′ |I⟩⟨J | ⊗ |I ′⟩⟨J ′| , (2.59)

where we have defined the matrix elements

[ρQQ′]II′,JJ ′ =
∑
s

ps αs,II′α
∗
s,JJ ′ . (2.60)

Exercise 2.13. What are the conditions on [ρQQ′]II′,JJ ′ if ρQQ′ is the density oper-
ator of a separable system?

Tracing out over the Hilbert space of the subsystem Q′, we get

ρQ = TrQ′ρQQ′ = TrQ′

[∑
I,J,I′,J ′

[ρQQ′]II′,JJ ′|I⟩⟨J | ⊗ |I ′⟩⟨J ′|
]

=
∑

I,J,I′,J ′,K′

[ρQQ′]II′,JJ ′|I⟩⟨J | ⊗ ⟨K ′|I ′⟩⟨J ′|K ′⟩ . (2.61)

12

Using that δK′I′δJ ′K′ = δI′J ′ , we arrive at the reduced density operator of subsystem
Q′,

ρQ =
∑
I,J,I′

[ρQQ′]II′,JI′ |I⟩⟨J | . (2.62)

Exercise 2.14. Compute explicitly the reduced density operator of the second sub-
system.

2.3 State Evolution

The true power of the density operator formalism shows when studying subsystems
of highly entangled multipartite systems. In particular, as we will see next, it pro-
vides a neat mathematical description of the evolution of the individual subsystems
of a bipartite system. Again, let us start recalling how the state vector formalism
approaches the problem.
Suppose we know the state vector of an isolated quantum system at some initial

time t0, call it |Q(t0)⟩. According to the postulates of conventional quantum me-
chanics, the state of the system at any other time t is obtained by applying the
unitary time evolution operator U(t, t0),

|Q(t0)⟩ 7−→ |Q(t)⟩ = U(t, t0)|Q(t0)⟩ . (2.63)

If we assume that the system stays isolated, the time evolution operator takes the
simple form U(t, t0) = exp(−iĤ(t − t0)), where Ĥ is the time-independent Hamil-
tonian operator. Note that, the time evolution operator U(t, t0) acts on the Hilbert
space Ht0 of the system at time t0 and gives a vector in the Hilbert space Ht at time
t,

U(t, t0) : Ht0 → Ht , |Q(t0)⟩ 7→ |Q(t)⟩ = U(t, t0)|Q(t0)⟩ . (2.64)

This is practically all we need to know, at least theoretically, to predict the time
evolution of a closed system. In the density operator formalism, the basic principles
are also easy to formulate.
Because the system is initially in the state vector |Q(t0)⟩, the density operator is

simply the pure state
ρ(t0) = |Q(t0)⟩⟨Q(t0)| . (2.65)

Using the formula (2.63) for the time evolution, the corresponding density operator
at time t can be found by simply saying that

ρ(t) = |Q(t)⟩⟨Q(t)| = U(t, t0)|Q(t0)⟩⟨Q(t0)|U †(t, t0)

= U(t, t0)ρ(t0)U
†(t, t0) . (2.66)

Note that, while in the standard formalism of quantum mechanics the initial and
final state vectors are related by the time evolution operator (2.64), in the density
operator formalism, the initial and final states are related by a new kind of operator
that acts on the space of density operators at time t0 and gives a density operator
at time t,

Φ(t, t0) : D(t0)→ D(t) , ρ(t0) 7→ ρ(t) = Φ(t, t0)ρ(t0) . (2.67)

Operators such as this, that connect two operator spaces, are called superopera-
tors by mathematicians. Physicists prefer to call them quantum maps or quantum
channels .

13

Exercise 2.15. If the initial quantum system is in a mixed state, how does it evolve
in time? Assume that P (|Qs⟩) = P (U |Qs⟩).

The density operator formalism applies the same idea to subsystems of multi-
partite quantum systems. That is, if QQ′ is a bipartite system and ρQ(t0) is the
reduced density operator of the subsystem Q, the formalism states that there is a
superoperator

ΦQ(t, t0) : DQ(t0)→ DQ(t) , ρQ(t0) 7→ ρQ(t) = ΦQ(t, t0)ρQ(t0) . (2.68)

Exercise 2.16. Prove this assertion.

Let us see this in more detail. Imagine two quantum systems Q and Q′ that are
completely unentangled from each other as well as from the rest of the universe.
Since they are unentangled, the density operator that describes the bipartite system
at time t0 is simply

ρQQ′(t0) = ρQ(t0)⊗ ρQ′(t0) . (2.69)

Suppose, moreover, that we know nothing about Q but have a statistical knowledge
of subsystem Q′. For example, we know that at time t0, Q

′ has a probability
distribution {|Q′

0⟩, pQ′
0
}, where {|Q′

0⟩} is a basis for the Hilbert space (HQ′)0 of the
system Q′ at time t0. Thus, the state operator of Q′ at time t0 is

ρQ′(t0) =
∑
Q′

0

pQ′
0
|Q′

0⟩⟨Q′
0| , (2.70)

The state operator of the bipartite system is then

ρQQ′(t0) = ρQ(t0)
∑
Q′

0

pQ′
0
|Q′

0⟩⟨Q′
0| , (2.71)

where, for simplicity, we have omitted the tensor product symbol.
Now, suppose that after time t0, Q and Q′ interact for a time period ∆t = t− t0.

We still know nothing about Q, of course; however, we do know that, since there
is no interaction with the rest of the universe, the bipartite system QQ′ evolves
unitarily,

ρQQ′(t0) 7→ ρQQ′(t) = U(t, t0)ρQQ′(t0)U
†(t, t0) , (2.72)

where
U(t, t0) : (HQ)0 ⊗ (HQ′)0 → (HQ)t ⊗ (HQ′)t . (2.73)

With only this information, we want to know how the subsystem Q evolves in time.
The state operator of subsystem Q at time t is obtained as follows by the formula

of the reduced density operator given above,

ρQ(t) = TrQ′ρQQ′(t) =
∑
Q′

t

⟨ · Q′
t |ρQQ′(t)| · Q′

t ⟩ . (2.74)

The use of the dots is to emphasize that this is an operator and not a real number.

14

Keeping this in mind, we now drop the dots and get,

ρQ(t) =
∑
Q′

t

⟨Q′
t|ρQQ′(t)|Q′

t⟩

=
∑
Q′

t

⟨Q′
t|U(t, t0)ρQQ′(t0)U

†(t, t0)|Q′
t⟩

=
∑
Q′

t

⟨Q′
t|U(t, t0)

(
ρQ(t0)

∑
Q′

0

pQ′
0
|Q′

0⟩⟨Q′
0|
)
|U †(t, t0)|Q′

t⟩

=
∑
Q′

0,Q
′
t

√
pQ′

0
⟨Q′

t|U(t, t0)|Q′
0⟩ρQ(t0)

√
pQ′

0
⟨Q′

0|U †(t, t0)|Q′
t⟩ . (2.75)

It is common to write this expression in terms of the Kraus operators ,

KQ′
tQ

′
0
=
√
pQ′

0
⟨Q′

t|U(t, t0)|Q′
0⟩ , (2.76)

with,
KQ′

tQ
′
0
: (HQ)0 → (HQ)t . (2.77)

Exercise 2.17. Show that the Kraus operators satisfy the completeness relation,∑
Q′

0,Q
′
t

K†
Q′

tQ
′
0
KQ′

tQ
′
0
= 1 . (2.78)

Then, the density operator of subsystem Q at time t is,

ρQ(t) =
∑
Q′

0,Q
′
t

KQ′
tQ

′
0
ρQ(t0)K

†
Q′

tQ
′
0
. (2.79)

This expression is known as the Kraus representation of the density operator of
subsystem Q.

Exercise 2.18. Show that ρQ(t) satisfies all the properties of a density operator.

In conclusion, the state evolution of a quantum subsystemQ in the density operator
formalism is given by the action of a superoperator ΦQ(t, t0), where the latter is
defined in terms of the Kraus operators,

ΦQ(t, t0) : DQ(t0)→ DQ(t) , ρQ(t0) 7→ ρQ(t)

= ΦQ(t, t0)ρQ(t0)

=
∑
Q′

0,Q
′
t

KQ′
tQ

′
0
ρQ(t0)K

†
Q′

tQ
′
0
. (2.80)

Q′ indicates everything in the bipartite system not included in Q.
This expression of the superoperator ΦQ(t, t0), allow us to prove some of its main

properties. For example, that it is trace preserving,

Tr
[
ρQ(t)

]
= Tr

[∑
Q′

0,Q
′
t

KQ′
tQ

′
0
ρQ(t0)K

†
Q′

tQ
′
0

]
=

∑
Q′

0,Q
′
t

Tr
[
KQ′

tQ
′
0
ρQ(t0)K

†
Q′

tQ
′
0

]
=

∑
Q′

0,Q
′
t

Tr
[
K†

Q′
tQ

′
0
KQ′

tQ
′
0
ρQ(t0)

]
= Tr

[∑
Q′

0,Q
′
t

K†
Q′

tQ
′
0
KQ′

tQ
′
0
ρQ(t0)

]
= Tr

[(∑
Q′

0,Q
′
t

K†
Q′

tQ
′
0
KQ′

tQ
′
0

)
ρQ(t0)

]
= Tr

[
ρQ(t0)

]
. (2.81)

15

It is, as well, easy to show that the superoperator ΦQ(t, t0) is linear, that is, that

ΦQ(t, t0)
(
aρQ(t0) + bρ′Q(t0)

)
= aΦQ(t, t0)ρQ(t0) + bΦQ(t, t0)ρ

′
Q(t0) . (2.82)

Exercise 2.19. Prove the linearity of ΦQ(t, t0).

2.4 Measurement

Now that we know how to describe a quantum system in terms of its density operator,
in particular, its evolution in time, we would like to understand how to obtain
information about the system. In other words, we want to discuss the measurement
process in the density operator formalism. Let us start, though, with a quick review
of how measurements are described in the state vector formalism.
As we saw, the state vector formalism, given an n qubit |Q⟩ =

∑
s′ αs′|Qs′⟩, the

probability of measuring a basis state vector |Qs⟩ is given by the squared modulus
of the corresponding coefficient αs, that is,

|Q⟩ =
∑
s′

αs′ |Qs′⟩
Ms7−−−→ P (|Qs⟩) = ps =

∣∣⟨Qs|
∑
s′

αs′ |Qs′⟩
∣∣2 = |αs|2 . (2.83)

For instance, for a single-qubit state vector |q⟩ expressed in the computational basis
{|0⟩ , |1⟩}, that is, |q⟩ =

∑
i αi|i⟩, the probability of measuring the state |i⟩ is |αi|2.

Another way of writing this is

P (|i⟩) = |⟨i|q⟩|2 = ⟨i|q⟩∗⟨i|q⟩ = ⟨q|i⟩⟨i|q⟩ = ⟨q|Πi|q⟩ , (2.84)

where Πi is the projection operator on the computational basis vector |i⟩, Πi = |i⟩⟨i|.
Similarly, the probabilities of measuring the single qubit |q⟩ in the Hadamard basis
vectors |+⟩ and |−⟩ are

p± = |⟨±|q⟩|2 = ⟨±|q⟩∗⟨±|q⟩ = ⟨q|±⟩⟨±|q⟩ = ⟨q|P±|q⟩ , (2.85)

where Π± are the projector operators on |±⟩, Π± = |±⟩⟨±|. Actually, this argument
generalizes to any basis {|Os⟩} of the Hilbert space HO of observational states,

ps = |⟨Os|q⟩|2 = ⟨Os|q⟩∗⟨Os|q⟩ = ⟨q|Os⟩⟨Os|q⟩ = ⟨q|Πs|q⟩ , (2.86)

where Πs = |Os⟩⟨Os|. Now, since Πs = Π†
s and Πs = Π2

s, we can write

ps = ⟨q|Πs|q⟩ = ⟨q|Π†
sΠs|q⟩ . (2.87)

The previous discussion seems to suggest that we can interpret the measurement

process M as an operator that maps |q⟩ M7−→ |Os⟩ = Πs|q⟩. There is, though, a
missing normalization factor. In fact, Πs|q⟩ is not a unit vector, the unit vector is
Πs|q⟩/

√
ps because

⟨Os|Os⟩ =
⟨q|Π†

sΠs|q⟩
ps

= 1 . (2.88)

From here, we get

⟨q|
∑
s

Π†
sΠs|q⟩ =

∑
s

ps , (2.89)

16

and, since the sum of the probabilities is equal to one and the initial qubit vector is
normalized, we must have that ∑

s

Π†
sΠs = I , (2.90)

where I is the identity operator.
A measurement on a single qubit is thus a projector Πs that transforms

|q⟩ Ms7−−−→ |Os⟩ =
Πs|q⟩√
ps

=
Πs|q⟩√
⟨q|Π†

sΠs|q⟩
, (2.91)

and is subject to the condition (2.90).

Exercise 2.20. Generalize these arguments to an arbitrary n qubit.

More generally, given a basis {|Os⟩} for the Hilbert space HO of observable states,
a measurement operator is a map

Ms : HQ → HQ , |Q⟩ 7→ |Os⟩ =
Ms|Q⟩√

ps
, (2.92)

that satisfies ∑
s

M †
sMs = I . (2.93)

The probability of measuring |Os⟩ is given by

ps = ⟨Q|M †
sMs|Q⟩ . (2.94)

At first, it seems that there is nothing new in these definitions. In fact, we have just
seen that projectors meet all these requirements. Note that, however, the definition
we just gave is more general because they may be measurement operators Mσ that
do not obey the defining properties of projectors (Πs = Π†

s and Πs = Π2
s).

Our goal, now, is to translate everything we have just said about measurements to
the language of the density operator formalism. That is, given the state operator ρ
of a physical system at some initial time, the objective is to find the state operator
ρs of the system after the measurement has been performed.

Note: In the following, we use some basic probability. In Box 3.1 you can find a
quick survey if you want to refresh your memory. We denote join probabilities by
pr,s and conditional probabilities by pr|s. According to Bayes’ theorem (3.7), they
are related by pr|s = pr,s/ps.

Suppose that, before the measurement, the quantum system is in the state

ρ =
∑
s′

ps′ |Qs′⟩⟨Qs′| , (2.95)

where |Qs′⟩⟨Qs′| : HO → HO. If the observational state vectors are {|Qs⟩}, the
measurement process is such that

ρ
Ms7−−−→ ρs =

∑
s′

ps′|s |Qs|s′⟩⟨Qs|s′| . (2.96)

17

By ps′|s, we indicate the probability that the state that enters the apparatus is in
|Qs′⟩ given the fact that we measure |Qs⟩. Using Bayes’ theorem,

ρs =
∑
s′

ps′, s
ps
|Qs|s′⟩⟨Qs|s′ | , (2.97)

or, taking into account that ps′, s = ps,s′ ,

ρs =
∑
s′

ps,s′

ps
|Qs|s′⟩⟨Qs|s′| . (2.98)

Now, since the state |Qs|s′⟩ is the result of a measurement, we can use (2.92) to
write,

|Qs|s′⟩ =
Ms|Qs′⟩√

ps|s′
=

√
ps′√
ps,s′

Ms|Qs′⟩ , (2.99)

giving,

|Qs|s′⟩⟨Qs|s′| =
ps′

ps,s′
Ms|Qs′⟩⟨Qs′|M †

s . (2.100)

Putting all this together,

ρs =
∑
s′

ps′

ps
Ms|Qs′⟩⟨Qs′|M †

s

=
1

ps
Ms

(∑
s′

ps′ |Qs′⟩⟨Qs′ |
)
M †

s

=
MsρM

†
s

ps
. (2.101)

Exercise 2.21. Show that for every Hermitian operator A and unit state vector
|Q⟩,

⟨Q|A|Q⟩ = Tr
[
A|Q⟩⟨Q|

]
. (2.102)

Applying this formula to (2.94), it follows that

ps = ⟨Q|M †
sMs|Q⟩ = Tr

(
M †

sMs|Q⟩⟨Q|
)

= Tr(M †
sMsρ) . (2.103)

Inserting this result into (2.101), we conclude that the density operator ρs that
describes the system after the measurement Ms is related to the initial density
operator ρ by the following formula,

ρs =
MsρM

†
s

Tr(M †
sMsρ)

. (2.104)

3 Information

Given two quantum systems initially unentangled, in the previous section we saw
how the operator density formalism describes their individual evolution after they
start interacting. Since the interaction produces a bipartite entangled system, it

18

is natural to ask how much we can “know about” one of the subsystems by only
experimenting with the other. This rather simple question raises other interesting
questions that, unfortunately, the average physicist is not used to ask him or herself.
For instance, what do we exactly mean by “to know about” and how do we measure
that “knowledge”? Thankfully, many years ago, computer scientists introduced a
concept that precisely answers these questions.
It was Claude Shannon who in the late 1940s discovered that, given a discrete

and finite probability distribution X = {xs, P (xs)}, where s = 1, . . . , S, there is a
natural way of quantifying the amount of information the system contains. This
principle is at the heart of classical information theory. As we will see, the same
basic idea applies to a quantum system with discrete and finite probability distri-
bution {|ψs⟩, P (|ψs⟩)}. Despite the similarities, though, we will see that the two
situations also show drastic differences.

Note: The next Box contains an elementary review of probability theory. I suggest
you read it because, even if you already know the subject, you will get familiar the
notation we will use in the following.

Box 3.1. Elementary probability concepts

Consider any physical experiment with a discrete and finite number of out-
comes {xs}, with s = 1, . . . , s, . . . S. Here, for later convenience, we include
events with no possibility of occurrence. Suppose, moreover, that we know the
probability of occurrence of every event, P (xs) = ps, subject to the condition
0 ≤ ps ≤ 1. In addition, we impose

∑
s ps = 1. In probability theory, we

assume that the probability distribution {xs, ps} contains everything we can
know about the system.
Now, suppose that we perform a different experiment on another system

(indeed, the two systems can be equal; however, in order to be as general
as possible, let us assume that they are different). As for the first system,
suppose that we know all the possible outcomes and their respective prob-
abilities of occurrence, {yr, pr}, with r = 1, . . . , r, . . . , R. If we analyze the
experimental data of both experiments and notice that the probability of si-
multaneous occurrence of every pair of events (xs, yr) is equal to the product
of the individual probabilities, that is, if

P (xs, yr) = P (xs)P (yr) , (3.1)

or, more briefly,
ps,r = pspr , (3.2)

we say that the two systems are independent . If, on the contrary, it turns out
that

ps,r ̸= pspr , (3.3)

even for a single pair (xs, yr), we say that the systems are dependent or corre-
lated. The probability ps,r, that is, the probability of simultaneous occurrence
of a pair of events, is known as joint probability .

19

Since, for every outcome xs of the first experiment, there are R different
possibilities for the second, it is clear that

ps = ps,r=1 + ps,r=2 + . . .+ ps,r=R =
∑
r

ps,r . (3.4)

Analogously,

pr =
∑
s

pr,s . (3.5)

These expressions are known as marginal probabilities . It is obvious that joint
probabilities satisfy

ps,r = pr,s . (3.6)

In addition to the joint probability, we can be interested in the probability
of occurrence of an event yr knowing in advance that xs has occurred. This is
known as conditional probability, denoted by P (yr|xs) = pr|s. Bayes’ theorem
affirms that conditional and joint probabilities are related by the following
formula,

pr|s =
pr,s
ps

. (3.7)

3.1 Classical Information Theory

In classical communication, the study of the physical and mathematical properties
of information is crucial. Specialists in this area, among other things, aim at quan-
tifying the information content of a message so that they can determine how much
of it can be transferred and with what degree of efficiency. In addition, the process-
ing and storage of classical information is of key importance for modern computer
science. Despite the importance of classical information theory for classical commu-
nication and computation, here we will only introduce the classical concepts needed
to understand the information theory proper of quantum systems, in particular,
open quantum systems.
Our starting point is a discrete and finite probability distributionX = {xs, P (xs) =

ps}, with s = 1, . . . , S. Of course, 0 ≤ ps ≤ 1 and
∑

s ps = 1. Notice that we are
including events xs for which ps = 0, that is, events that have no possibility to occur.
From the physical point of view, the probability distribution X can be the list of
all possible outcomes xs of certain experiment and the corresponding probabilities
ps. For instance, the results of tossing an unfair die or the classical states of the
particles emanating from a source.
The most basic concept in information theory is that of the information content

of a single event (sometimes also called the Shannon entropy of a single event). It
is defined by the following formula,

h(xs) = hs = log2
1

ps
. (3.8)

The unit of information content is the bit (not to be confused with the binary
digit b ∈ {0, 1}). In these notes, we will stick to the convention used by computer

20

scientists and write log2 simply as log. A simpler way of writing the information
content of a single event is then

hs = − log ps . (3.9)

For the moment, we are excluding events that cannot occur, that is, ps ̸= 0.
The following example will clarify why the information content, hs, and the prob-

ability of occurrence, ps, are inversely proportional to each other. Imagine that you
have a bag full of balls of different colors. Suppose there are Nw white balls and
Nw̄ of another color, with Nw >> Nw̄. If, on your first trial you pick a white ball,
from the information point of view you have not learned much about the system
because most probably (after replacing the ball) on your second trial you will pick
another white ball. If, on the contrary, on your first trial you pick a ball which is not
white, you have a better knowledge of the content of the bag because most prob-
ably your second ball will be white. This illustrates why the information content
of a single event is interpreted as the degree of uncertainty or surprise. Thus, the
more we know about a system, the less information it stores. This is why there no
information associated to a system if we know beforehand the experimental result,
− log 1 = 0. Finally, since hs ≥ 0, it follows that a system with more than one
possible outcome will necessarily have hs > 0 for every xs in X.

Exercise 3.1. Elaborate on the previous example by using specific numbers for the
number of balls.

Now, suppose you repeat N times the same experiment/observation on a physical
system and the event xs, for every s = 1, . . . , S, is obtained ns times. In this case, you
may include events that cannot occur, that is, events with ps = 0. Your experimental
results are then characterized by the probability distribution X = {xs, ns/N}, where
n1 + . . . + ns = N . According to Shannon’s classical theory, the total information
you gain about the system by making these observations is the sum of the individual
information contents carried by each event, that is, n1h1 + . . .+ nShS. On average,
then, each event will carry an information in bits given by

n1h1 + . . .+ nShS
N

=
n1

N
h1 + . . .+

nS

N
hS . (3.10)

When the number of experiments becomes infinitely large, N → ∞, the average
information content per event becomes

lim
N→∞

n1

N
h1 + . . .+ lim

N→∞

nS

N
hS = p1h1 + . . .+ pShS

= −p1 log p1 − . . .− pS log pS . (3.11)

This quantity is known as the Shannon entropy of the probability distribution X,

H(X) = −
∑
s

ps log ps . (3.12)

Note that we can have ps = 0 because 0 log 0 = 0.
For example, a two-state system with X = {x1, 1/2; x2, 1/2} contains 1 bit of

information because

H(X) =
∑
s

ps log
1

ps
=

1

2
log 2 +

1

2
log 2 = 1 . (3.13)

21

Similarly, n such independent systems contain n bits of information. Note that, just
like the information content of a single qubit, the Shannon entropy is determined
solely by the probabilities of the events and not their experimental values.
Since the probabilities are equal to or greater than zero, it follows that the Shannon

entropy
H(X) ≥ 0 . (3.14)

It vanishes only when there is one and only one possible experimental result, that
is, when the probability distribution is {x, px}; any other probability distribution
has positive Shannon entropy. In fact, it can be proved that the Shannon entropy
ranges from zero to logN ,

0 ≤ H(X) ≤ logN , (3.15)

where N is the number of experiments. The highest Shannon entropy is obtained
when all the possible outcomes have equal probability of occurrence, ps = 1/N . In
simple words, our ignorance about the system is the highest when all the events are
equally probable. Any other probability distribution contains more information.

Exercise 3.2. Prove (3.15) by using the inequality ln 1/x ≥ 1 − x, valid for any
positive number x.

Consider the following generalization of the classical binary system presented
above. This is the simplest non-trivial case with only two possible experimen-
tal results (think, for instance, of a bent coin). Its probability distribution is
X = {x, px = p ; x̄, px̄ = 1− p} and the Shannon entropy,

H(X) = −p log p− (1− p) log(1− p) . (3.16)

Instead of assuming that the entropy is given by the binary probability distribution
X, we can think of it as a function of a single variable,

H : [0, 1]→ [0, 1] , p 7→ H(p) , (3.17)

where
H(p) = −p log p− (1− p) log(1− p) . (3.18)

Exercise 3.3. For which value of p reaches H(p) its maximum value? Plot H(p).
Interpret your result.

Since the maximum entropy happens when the possible events are equally probable,
the binary probability function gives H(1/2) = 1. From here we conclude that, a
Yes/No problem (that is, a problem that in principle can be solved by a sequence
of Yes/No questions), has a total Shannon entropy equal to the number of Yes/No
questions we have to ask in order to solve it.
We applied the basic information theory introduced above to individual systems

with known probability distributions. But, what happens when we have several
systems? In principle, they may be correlated, that is, they may show a non-trivial
joint probability distribution. Let us see how Shannon’s theory works in this case.
Suppose we are given two physical systems, each with its own probability distri-

bution: X = {xs, P (xs) = ps}, where s = 1, . . . , S, and Y = {yr, P (yr) = pr},
where r = 1, . . . , R. Since we are assuming that they can be correlated, we can use

22

their joint probability ps,r to define the joint information content or Shannon joint
entropy of two events ,

hs,r = − log ps,r . (3.19)

This definition applies whether the two systems are correlated, ps,r ̸= pspr, or not,
ps,r = pspr. If they are independent of each other, the joint entropy is simply

hs,r = − log ps,r = − log(pspr) = hs + hr . (3.20)

This should not come as a surprise. Actually, remember that, in statistical physics
the thermodynamic entropy is defined in terms of the log function precisely because
it is the only function that guarantees this additive property.
The joint entropy of two systems XY is defined according to the Shannon entropy

given above. We start by defining the Shannon marginal joint entropy of subsystem
X,

H(X, yr) = −
∑
s

ps,r log ps,r . (3.21)

Exercise 3.4. In physical language, what does the marginal entropy tell us?

From here, we define the Shannon joint entropy of the composite system XY as,

H(X, Y) =
∑
r

H(X, yr) = −
∑
s,r

ps,r log ps,r . (3.22)

Since the joint entropy is clearly symmetric, ps,r = pr,s, it follows that

H(X, Y) = H(Y,X) . (3.23)

The joint entropy is thus the average information content carried by a pair of events,
one in X and the other in Y .

Exercise 3.5. Show that

H(X, Y) ≥ H(X) , H(X, Y) ≥ H(Y) . (3.24)

What do these inequalities mean physically? When do the identities hold?

The conditional probability of two events, pr|s, can be used in a similar way to
define the conditional information content or the Shannon conditional entropy of
two events ,

hr|s = − log pr|s . (3.25)

This is the information content of the event yr knowing that xs had already oc-
curred. Since, by Bayes’ theorem, pr|s = pr,s/ps and, by the symmetry of the joint
probability, pr,s = ps,r, it follows that pr|s = ps|rpr/ps, thus hr|s ̸= hs|r (unless, of
course, pr = ps)
If we define the marginal conditional entropy H(Y |xs) as the Shannon entropy of

system Y after having measured the single event xs of X by

H(Y |xs) = −
∑
r

pr|s log pr|s . (3.26)

23

The Shannon conditional entropy is the average information content of the events
of Y having a complete knowledge of X,

H(Y |X) =
∑
s

psH(Y |xs) = −
∑
s,r

pspr|s log pr|s . (3.27)

Using Bayes’ theorem, pspr|s = ps,r, the conditional Shannon entropy becomes

H(Y |X) = −
∑
s,r

ps,r log pr|s . (3.28)

Note that
H(Y |X) ≥ 0 . (3.29)

When X and Y are independent, that is, when ps,r = pspr,

H(Y |X) = −
∑
s,r

pspr log
pspr
ps

= −
∑
r

pr log pr = H(Y) . (3.30)

Indeed, it can be proved that more generally,

H(Y |X) ≤ H(Y) . (3.31)

Thus, on average, the element of surprise of subsystem Y is lesser when we know
in advance how the results of Y are conditioned by those of X. Only when the
two subsystems are uncorrelated, do the measurements of X provide no information
about Y .

Exercise 3.6. Show the inequality (3.31). Hint: use lnx ≤ x− 1, for any positive
x.

Exercise 3.7. Show that,

H(Y |X) = H(Y,X)−H(X) . (3.32)

What is this identity telling us? Use plain words.

Exercise 3.8. Show and explain in simple words following inequality

H(X, Y) ≤ H(X) +H(Y) . (3.33)

Exercise 3.9. Explain the relation

H(Y |X) ≤ H(Y) ≤ H(Y,X) . (3.34)

Above we have seen that, to every event xs we must assign the information content
hs = − log ps (for ps ̸= 0). If the system X is not correlated to any other system,
this is all the information carried by this event. However, if we know in advance
that this event is conditioned by the outcome yr of another system Y , we know
something about xs even before it occurs. Therefore, in this case, the information
content is hs minus the conditional information content of the pair of events (yr|xs),

hs − hs|r = − log ps + log ps|r = − log
pspr
ps,r

. (3.35)

24

On average, the information gained per pair of events (xs, yr) is, then,∑
s,r

ps,r(hs − hs|r) = −
∑
s,r

ps,r log
pspr
ps,r

. (3.36)

This quantity is called the mutual information of X and Y ,

I(X;Y) = −
∑
s,r

ps,r log
pspr
ps,r

. (3.37)

Using the properties of the log function, the mutual information can be written in
several equivalent ways. For example,

I(X;Y) = −
∑
s,r

ps,r log ps −
∑
s,r

ps,r log pr +
∑
s,r

ps,r log ps,r

= −
∑
s

ps log ps −
∑
r

pr log pr +
∑
s,r

ps,r log ps,r

= H(X) +H(Y)−H(X, Y) (3.38)

= H(X)−H(X|Y) , (3.39)

where, in the last step, we used (3.32). Since H(X, Y) = H(Y,X), the mutual
information is also symmetric,

I(X;Y) = I(Y ;X) . (3.40)

This means that given two statistical ensembles, the average information gained is
the same whether we observe X or Y . If they are independent, that is, if ps,r = pspr,
I(X;Y) = 0. So, as expected, there is no mutual information.

Exercise 3.10. Show that I(X;Y) ≥ 0.

Exercise 3.11. Interpret the following Venn diagram. Provide a physical interpre-
tation.

H(X, Y)

H(X) H(Y)

I(X;Y)

Fig. 2. Venn diagram for classical information concepts.

The following exercises ask you to generalize the definitions and properties given
above to more than two systems. To do that, assume that you are given three
physical systems X, Y, Z, each with its corresponding probability distribution. In
each case, draw the associated Venn diagram.

25

Exercise 3.12. Show that

H(X, Y, Z) = H(X) +H(Y |X) +H(Z|Y,X) , (3.41)

and
H(X, Y, Z) ≤ H(X) +H(Y) +H(Z) . (3.42)

When does the identity hold?

Exercise 3.13. Prove and explain in plain words the following identity,

H(X, Y |Z) = H(X|Z) +H(Y |X,Z) . (3.43)

Exercise 3.14. The conditional mutual information is defined as

I(X;Y |Z) = H(X|Z)−H(X|Y, Z) . (3.44)

What is this quantity telling us?

Exercise 3.15. Show that

I(X, Y ;Z) = I(X,Z) +H(Y ;Z|X) . (3.45)

Exercise 3.16. Prove the strong subadditivity relation,

I(X;Y |Z) ≥ 0 . (3.46)

When does the mutual information vanish?

Exercise 3.17. Generalize the previous results to an arbitrary number of systems
X1, X2, . . . , Xn.

Exercise 3.18. Justify the following definitions and generalize to n systems,

H(X, Y, Z) = −
∑
s,r,t

ps,r,t log ps,r,t , (3.47)

H(X, Y |Z) = −
∑
s,r,t

ps,r,t log ps,r|t , (3.48)

H(Z|X, Y) = −
∑
s,r,t

ps,r,t log pt|s,r , (3.49)

I(X;Y ;Z) = −
∑
s,r,t

ps,r,t log
prpspt
ps,r,t

. (3.50)

Use these formulas to confirm your answers of the previous exercises.

Before closing this short introduction to classical information theory, there is a
last useful measure we would like to introduce. Imagine you have two macroscopic
systems that look exactly the same; for example, a pair of dice or coins. However,
after extensive experimentation, you conclude that, in fact, they are not identical.
You discover that, under the same experimental conditions, they exhibit different

26

probability distributions. Let us say that system X is characterized by {xs, ps} and
system X̃ by {xs̃, ps̃}. The corresponding Shannon entropies are,

h(xs) = − log ps , H(X) = −
∑
s

ps log ps , (3.51)

h(xs̃) = − log ps̃ , H(X̃) = −
∑
s̃

ps̃ log ps̃ . (3.52)

We wish to quantify the dissimilarity of the two probability distributions X and
X̃. For this, we start by introducing the relative entropy between a pair of events
(xs, xs̃) ∈ (X, X̃),

h(xs∥xs̃) = h(xs̃)− h(xs) = − log ps̃ + log ps = − log
ps̃
ps
. (3.53)

The average relative entropy of a pair of events (xs, xs̃) per event xs ∈ X is what is

called the relative entropy between X and X̃,

H(X∥X̃) = −
∑
s,s̃

ps log
ps̃
ps

= −
∑
s,s̃

ps(log ps̃ − log ps) . (3.54)

Relative entropy is also known as divergence or discrimination (usually denoted
with the letter D). Beware that relative entropy is not symmetric,

H(X∥X̃) = −
∑
s,s̃

ps log
ps̃
ps

̸= −
∑
s,s̃

ps̃ log
ps
ps̃

= H(X̃∥X) . (3.55)

In order to distinguish these two expressions, it is more appropriate to say that
H(X∥X̃) is the entropy of X relative to X̃, and H(X̃∥X) the entropy of X̃ relative
to X.

Exercise 3.19. State in simple words the difference, concerning their information
content, between H(X∥X̃) and H(X̃∥X).

Note that, if X = X̃,

H(X∥X) = −
∑
s

ps log
ps
ps

= 0 . (3.56)

Otherwise, that is, when X ̸= X̃,

H(X∥X̃) > 0 . (3.57)

Thus, relative entropy is a non-negative quantity,

H(X∥X̃) ≥ 0 . (3.58)

In case one of the systems has only one possible outcome, say X̃ = {xs̃, ps̃ = 1},
then

H(X∥xs̃) = −
∑
s

ps log
ps̃
ps

= −
∑
s

ps log
1

ps
= H(X) . (3.59)

27

Inspired by the definition of relative entropy, we can as well introduce the joint
relative entropy ,

H(ps,r∥p̃s,r) = −
∑
s,r

ps,r log
p̃s,r
ps,r

, (3.60)

and the conditional relative entropy ,

H(ps|r∥p̃s|r) = −
∑
s,r

ps,r log
p̃s|r
ps|r

. (3.61)

Exercise 3.20. Show that H(ps|r∥p̃s|r = pspr) = I(X, Y).

3.2 Quantum Information Theory

In the previous subsection we considered a classical system X as a source of ran-
dom events characterized by a probability distribution {xs, ps}. Using only this
experimental data, in particular, the probabilities, the Shannon entropy defines its
information content. For more than two classical systems, their joint and conditional
probabilities were used to define other more sophisticated information measures.
Similarly, we know that in the density operator formalism, a quantum system is

considered to be a random source of observational states with certain probabilities.
It is natural, then, to expect a quantum version of the Shannon entropy as well as
of the other information measures in order to quantify the information content in
the quantum world. This is what we will do in this subsection.
Now, since classical physics is a special limit of quantum physics, classical infor-

mation theory is, as a matter of fact, a special case of quantum information theory.
This is why there are quantum analogs of the various classical information measures
discussed in the previous subsection. However, because of quantum entanglement,
we will see that these quantum quantities can differ radically from their classical
counterparts.
Given a quantum system Q, whether open or not, its von Neumann entropy is

defined by
S(Q) = S(ρQ) = −TrQ

[
ρQ log ρQ

]
. (3.62)

Note that, to distinguish at a glance the classical Shannon entropy from the quantum
von Neumann entropy, we have denoted the former by the letter H and the latter
by S.
Before going any further, let us show that the quantum von Neumann entropy is,

in fact, analogous to the classical Shannon entropy. For this, we need the eigenvalue
decomposition of the density operator given in (2.19),

ρQ =
∑
s

ps|es⟩⟨es| . (3.63)

28

Inserting this formula in the definition of the von Neumann entropy, gives

S(ρQ) = −TrQ
[
ρQ log ρQ

]
= −TrQ

[∑
s

ps|es⟩⟨es| log
∑
s′

ps′|es′⟩⟨es′|
]

= −TrQ
[∑

s,s′

ps log ps′ |es⟩⟨es|es′⟩⟨es′|
]

= −TrQ
[∑

s

ps log ps|es⟩⟨es|
]

= −
∑
s

ps log psTr
[
|es⟩⟨es|

]
= −

∑
s

ps log ps
∑
s

ps

= −
∑
s

ps log ps . (3.64)

As we wanted to show. Note that, since 0 < ps < 1, the von Neumann entropy is
semi-positive, S(ρQ) ≥ 0.
It is easy to show that the von Neumann entropy is, in fact, independent of the

orthonormal basis chosen for HQ. Suppose that {|e′s⟩} is another orthonormal basis
for HQ, related to {|es⟩} by |es⟩ = U |e′s⟩, where U is a unitary operator. The density
operators are, thus, related by ρ′Q = UρQU

†. The von Neumann entropy in this new
basis is then,

S(ρ′Q) = −TrQ
[
ρ′Q log ρ′Q

]
= −TrQ

[
UρQU

† log
(
UρQU

†)]
= −TrQ

[
UρQU

†U(log ρQ)U
†] = −TrQ[UρQ(log ρQ)U †]

= −TrQ
[
ρQ(log ρQ)U

†U
]
= −TrQ

[
ρQ log ρQ

]
= S(ρQ) . (3.65)

Let us see how this works in practice considering the von Neumann entropy of the
mixed single-qubit state given in (2.27),

ρq = p0|0⟩⟨0|+ (1− p0)|1⟩⟨1| . (3.66)

From the definition of the von Neumann entropy,

S(q) = −Trq
[
ρq log ρq

]
= −Trq

[(
p0|0⟩⟨0|+ (1− p0)|1⟩⟨1|

)
log

(
p0|0⟩⟨0|+ (1− p0)|1⟩⟨1|

)]
= −Trq

[(
p0|0⟩⟨0|+ (1− p0)|1⟩⟨1|

)(
log p0|0⟩⟨0|+ log(1− p0)|1⟩⟨1|

)]
= −Trq

[(
p0|0⟩⟨0|+ (1− p0)|1⟩⟨1|

)
log p0|0⟩⟨0|

]
− Trq

[(
p0|0⟩⟨0|+ (1− p0)|1⟩⟨1|

)
log(1− p0)|1⟩⟨1|

]
= −Trq

[
p0 log p0|0⟩⟨0|0⟩⟨0|

]
− Trq

[
(1− p0) log(1− p0)|1⟩⟨1|1⟩⟨1|

]
= −Trq

[
p0 log p0|0⟩⟨0|

]
− Trq

[
(1− p0) log(1− p0)|1⟩⟨1|

]
= −p0 log p0⟨0|0⟩⟨0|0⟩ − (1− p0) log(1− p0)⟨1|1⟩⟨1|1⟩

= −p0 log p0 − (1− p0) log(1− p0) . (3.67)

29

We can, of course, calculate this entropy by using an explicit matrix representation
of the density operator as the one given in (2.30)), that is,

S(q) = −Trq
[
ρq log ρq

]
= −Tr

([
p0 0
0 1− p0

] [
log p0 0
0 log(1− p0)

])
= −p0 log p0 − (1− p0) log(1− p0) . (3.68)

In particular, for p0 = p1 = 1/2,

ρq =
1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1| , (3.69)

and the von Neumann entropy is then

S(q) = −1

2
log

1

2
− 1

2
log

1

2
= − log

1

2
= log 2 = 1 . (3.70)

Note that the von Neumann entropy of the mixed single-qubit state (3.66) is equal
to the Shannon entropy (3.16) of a classical binary system. They coincide because
the two orthonormal states |0⟩ and |1⟩ are completely distinguishable (no quantum
correlation between them), exactly as the outcomes of a binary classical system such
as a bent coin.

Exercise 3.21. Show that this result is independent of the matrix representation
of the density operator.

For a general pure single-qubit state, the calculation of the entropy is less obvious.
First, we use |q⟩ = α0 |0⟩+ α1 |1⟩ to build the density matrix,

ρq = |q⟩⟨q| =
[
α0α

∗
0 α0α

∗
1

α∗
0α1 α1α

∗
1

]
, (3.71)

and then find the eigenvalue decomposition to be used in the formula (3.64).

Exercise 3.22. What are the von Neumann entropies of the pure states |±⟩⟨±|,
where |±⟩ = (|0⟩ ± |1⟩)/

√
2 are the Hadamard basis states?

Exercise 3.23. What is the von Neumann entropy of any pure single-qubit state
|q⟩⟨q|, with |q⟩ = α0 |0⟩+ α1 |1⟩?

Exercise 3.24. What is the von Neumann entropy of the pure state |ρβ0⟩⟨ρβ0 |,
where |ρβ0⟩ is the Bell state given in (2.52)?

Exercise 3.25. Show that the von Neumann entropy of any pure state |Q⟩⟨Q| is
equal to zero.

In principle, any quantum system Q can be viewed as part of a greater bipartite
system QQ′. The individual subsystem Q, as we know, is described by the reduced
density operator ρQ = TrQ′ρQQ′ . It is natural, then, to define the reduced von
Neumann entropy of Q by

S(Q) = S(ρQ) = −TrQ
[
ρQ log ρQ

]
= −TrQ

[
TrQ′ρQQ′ log TrQ′ρQQ′

]
. (3.72)

30

Exercise 3.26. Draw the Venn diagram that illustrates this definition.

The joint von Neumann entropy is defined by

S(Q,Q′) = S(ρQQ′) = −TrQQ′
[
ρQQ′ log ρQQ′

]
. (3.73)

When the two subsystems are decoupled, that is, when ρQQ′ = ρQρQ′ , the von
Neumann entropy satisfies the so called additivity property ,

S(ρQQ′) = S(ρQρQ′) = S(ρQ) + S(ρQ′) . (3.74)

To prove this property, we start with the eigenvalue decomposition of the density
operators ρQ and ρQ′ and insert them in the definition of the von Neumann entropy,

S(ρQρQ′) = −TrQQ′
[
(ρQ ⊗ ρQ′) log(ρQ ⊗ ρQ′)

]
= −TrQQ′

[
(ρQ ⊗ ρQ′) log(

∑
s

ps|es⟩⟨es| ⊗
∑
s′

p′s′|e′s′⟩⟨e′s′|)
]

= −TrQQ′
[
(ρQ ⊗ ρQ′)(

∑
s,s′

log(psp
′
s′)|es⟩⟨es| ⊗ |e′s′⟩⟨e′s′|)

]
= −TrQQ′

[
(ρQ ⊗ ρQ′)(

∑
s

log ps|es⟩⟨es| ⊗
∑
s′

|e′s′⟩⟨e′s′|)
]

− TrQQ′
[
(ρQ ⊗ ρQ′)(

∑
s

|es⟩⟨es| ⊗
∑
s′

log p′s′|e′s′⟩⟨e′s′|)
]

= −TrQQ′
[
(ρQ ⊗ ρQ′)(log ρQ ⊗ IQ′)

]
− TrQQ′

[
(ρQ ⊗ ρQ′)(IQ ⊗ log ρQ′)

]
= −TrQQ′

[
ρQ log ρQ ⊗ ρQ′]− TrQQ′

[
ρQ ⊗ ρQ′ log ρQ′

]
= −TrQ

[
ρQ log ρQ

]
· TrQ′ρQ′ − TrQρQ · TrQ′

[
ρQ′ log ρQ′

]
= −TrQ

[
ρQ log ρQ

]
− TrQ′

[
ρQ′ log ρQ′

]
= S(ρQ) + S(ρQ′) . (3.75)

Recall that most generally ρQQ′ ̸= ρQρQ′ . It can be proved that in this case, the von
Neumann entropy of a bipartite system satisfies the subadditivity property ,

S(ρQ′Q′) < S(ρQρQ′) , (3.76)

In conclusion,
S(Q,Q′) ≤ S(Q) + S(Q′) , (3.77)

and the equality holds only when the two subsystems are independent, ρQQ′ =
ρQρQ′ .

Exercise 3.27. Prove the subadditivity property of the von Neumann entropy.

Exercise 3.28. If Q and Q′ are subsystems of the bigger tripartite system QQ′Q′′,
how would you define the joint entropy S(Q,Q′) in terms of the density operator
ρQQ′Q′′? Draw the corresponding Venn diagram.

Exercise 3.29. Generalize the previous exercise to an arbitrary multipartite system.

31

In (3.24), we saw that the joint entropy of two classical systems is greater than
or equal to the entropy of each subsystem, H(X, Y) ≥ H(X), H(Y). In quantum
information theory, this is not true. Actually, it can be shown that a bipartite
system S(Q,Q′) = 0 can still have S(Q) = S(Q′) > 0. This is, for example, the case
of the pure Bell state |ρβ0⟩⟨ρβ0|. As we showed in Exercise 3.24, its entropy S(β0) –
as for any other pure state – is zero. However, the reduced von Neumann entropies
of the individual qubits (obtained by using the reduced density matrices (2.55) and
(2.56)),

ρq =
1

2

[
1 0
0 0

]
+

1

2

[
0 0
0 1

]
, ρq′ =

1

2

[
1 0
0 0

]
+

1

2

[
0 0
0 1

]
, (3.78)

are greater than zero,

S(q) =
1

2
+

1

2
= 1 , S(q′) =

1

2
+

1

2
= 1 . (3.79)

Thus, as asserted, in quantum information theory,

S(β0) < S(q), S(q′) . (3.80)

In classical information theory, we first defined conditional entropy by equation
(3.28) and then you found that it satisfied property (3.32), H(Y |X) = H(Y,X) −
H(X). This last relation is used to define the conditional von Neumann entropy of
a quantum bipartite system,

S(Q′|Q) = S(Q′, Q)− S(Q) . (3.81)

More explicitly,

S(ρQ′|ρQ) = −TrQQ′
[
ρQQ′ log ρQQ′

]
− TrQ

[
TrQ′ρQQ′ log TrQ′ρQQ′

]
. (3.82)

Exercise 3.30. Prove that
S(Q′|Q) ≤ S(Q′) . (3.83)

In analogy with the classical concept introduced in (3.38), we define the mutual
quantum information by,

I(Q;Q′) = S(Q) + S(Q′)− S(Q,Q′) . (3.84)

Sometimes also denoted by I(Q : Q′). As for classical information, the mutual
quantum information is semi-positive, I(Q;Q′) ≥ 0. It is equal to zero only when
the two subsystems are uncorrelated, that is, when ρQQ′ = ρQ ρQ′ .
We can also define a relative quantum entropy that measures, as its classical coun-

terpart, how different two probability distributions are. Given two probability dis-
tributions Q = {|Qs⟩, ps} and Q̃ = {|Qs̃⟩, ps̃}, with respective density operators ρQ
and ρQ̃, their relative von Neumann entropy is

S(Q∥Q̃) = S(ρQ∥ρQ̃) = Tr
[
ρQ(log ρQ − log ρQ̃)

]
. (3.85)

Exercise 3.31. Show that, when written in diagonal form, the relative quantum
entropy reduces to the classical formula (3.54).

32

Since S(Q∥Q) = 0, it follows that the larger S(Q∥Q̃), the easier it is to distinguish

between Q and Q̃. Relative quantum entropy and mutual quantum information are
related by

S(ρQQ′∥ρQρQ′) = I(Q;Q′) . (3.86)

Given two quantum channels ΦQ(t, t0) and ΦQ̃(t, t0),

ρQ(t) = ΦQ(t, t0)ρQ(t0) , ρQ̃(t) = ΦQ̃(t, t0)ρQ̃(t0) , (3.87)

the relative quantum entropy always decreases after applying them,

S(ΦQ(t, t0)ρQ(t0)∥ΦQ̃(t, t0)ρQ̃(t0)) ≤ S(ρQ(t0)∥ρQ̃(t0)) . (3.88)

So, it is increasingly harder to distinguish between the two systems. For example,
if ρQQ′ 7→ ρQ and ρQ̃Q̃′ 7→ ρQ̃, then

S(ρQ∥ρQ̃) ≤ S(ρQQ′∥ρQ̃Q̃′) . (3.89)

4 Algorithms and Secure Communication

In this section, we introduce the so called Quantum Phase Estimation (QPE) algo-
rithm and the Variational Quantum Eigensolver (VQE) algorithm. Our approach,
in both cases, is practical rather than purely theoretical.
Suppose a complex quantum system, for example, a molecule. Our knowledge of

the ground-state energy of the system is crucial to understand how it interacts with
external factors. This is something theorists know very well. In fact, for decades,
physicists and chemists have been studying the electronic structure of molecules and
have tried to find the ground-state energy of useful, but relatively simple, molecules.
This endeavor has been fostered by the advent of powerful classical computers. How-
ever, despite considerable progress in this direction, traditional quantum chemistry
and classical computers are inefficient to solve the ground-state energy problem of
complex molecules which are of practical impact (such as the ones used in the phar-
maceutical and food industries). By these means, it would take too long (exponential
time) to have a complete knowledge of the ground-state energy of such molecules,
needless to say an understanding of their chemical reactions. The two quantum
algorithms we present here are attempts to solve this problem in practicable time
(polynomial time).
It is worth mentioning that the fundamental difference between the two algorithms

is practical. Actually, compared to the VQE algorithm, the QPE algorithm provides
a more accurate estimate of the ground-state energy. However, while the QPE
algorithm requires a fully-built quantum computer to operate, not accessible in the
foreseeable future, the VQE algorithm integrates a classical part and a quantum
subroutine that can be run in quantum computers deemed to be attainable in the
near future.
Considerations concerning the future implementation of practical quantum algo-

rithms have to do with the so-called Noisy Intermediate-Scale Quantum (NISQ)
era we live in. In fact, despite the many advances in the technological front, due
to the limited number and quality of the current qubits, the noisy gates and the
undesirable interactions with the environment, we are still very far from achieving
fully-quantum computers able to realize purely quantum algorithms. This is why

33

scientists are trying to design and develop algorithms with small quantum size and
assign to powerful classical computers the rest of the tasks we already know they
are good at. The VQE algorithm is an example of these more realistic algorithms
scientists are trying to put in place.
We conclude this section with another useful application of quantum physics: se-

cure communication by transferring information through quantum channels.

4.1 Quantum Phase Estimation

Suppose you want to describe, as precisely as possible, a highly complex time-
independent quantum system. For example, a large molecule with many electrons.
In principle, your goal is to find an exact analytic solution of the time-independent
Schrödinger equation,

Ĥ|ψ⟩ = E|ψ⟩ . (4.1)

That is, given the Hamiltonian Ĥ, you have to find the states |ψ⟩ and the corre-
sponding energies satisfying this equation. This problem, though, is in general very
difficult and classical computational methods only provide approximate solutions.

Exercise 4.1. Do you remember how the equation (4.1) is obtained from the general
time-dependent Schrödinger equation?

If you want to approach this problem using a quantum computer, the first thing
you have to do is to model all the elements in equation (4.1) in terms of qubits
and quantum circuits. Thus, we assume that you have found a qubit analog of the
quantum system, that is, that you have a qubit Hilbert space HQ containing all the
state vectors |Q⟩ that simulate any state |ψ⟩ of the physical system. In addition, we
assume that you have found a quantum circuit ĤQ that models the Hamiltonian Ĥ
of the system. The time-independent Schrödinger equation (4.1) then becomes an
eingenvalue equation in the qubit space,

ĤQ|Q⟩ = E|Q⟩ , (4.2)

where |Q⟩ ∈ HQ
∼= C2n and ĤQ : HQ → HQ. If we assume that the Hamilto-

nian is non-degenerate, then, there are 2n eigenvalues Eν with their corresponding
eigenvectors |Eν⟩,

ĤQ|Eν⟩ = Eν |Eν⟩ , (4.3)

with ν = 0, . . . , 2n− 1. The eigenbasis {|Eν⟩} can then be used to expand any state
vector |Q⟩ ∈ HQ,

|Q⟩ =
2n−1∑
ν=0

cν |Eν⟩ . (4.4)

Exercise 4.2. Show that all the eigenvalues Eν of ĤQ are real and the set of
eigenvectors {|Eν⟩} form an orthonormal basis of HQ.

Until here everything has been ideally simple. In reality, though, it is believed that
the problem of finding the energy levels of a Hamiltonian is an exponentially hard
problem, both for quantum and, all the more, for classical computers. Remember
that a computational problem is said to be “easy” if the number of steps needed to
solve it scales polynomially with the size of the input and it is said to be “hard” if it

34

scales exponentially. The QPE algorithm that we now present provides an estimate
of the energy eigenvalues of a complex Hamiltonian.
Suppose we have been able to build the unitary transformation

U = eiĤQ . (4.5)

It transforms an eigenvector of the Hamiltonian as follows,

U |Eν⟩ = eiĤQ |Eν⟩ = eiEν |Eν⟩ . (4.6)

For convenience, we write Eν = 2πθν , where θν ∈ [0, 1] is called the phase angle,

U |Eν⟩ = e2πiθν |Eν⟩ . (4.7)

(Note that to each eigenvector |Eν⟩ there corresponds an angle θν .) Our goal is
to estimate the phase angles and, therefore, determine the eigenvalues Eν of the
Hamiltonian.

Exercise 4.3. Show that the eigenvalues of unitary transformations are complex
numbers of unit magnitude.

Consider the following experiment,

|0⟩ H

|Q⟩ U

|ω⟩

Fig. 3

The outgoing state |ω⟩ is obtained as follows,

|0⟩|Q⟩ 7−−−→ 1√
2

2∑
k=1

|k⟩
2n−1∑
ν=0

cν |Eν⟩

7−−−→ 1√
2

∑
k

∑
ν

cν |k⟩Uk|Eν⟩

=
1√
2

∑
k

∑
ν

cν |k⟩ e2πikθν |Eν⟩ . (4.8)

That is,

|ω⟩ =
∑
ν

cν

(1√
2

∑
k

e2πikθν |k⟩
)
|Eν⟩ . (4.9)

At the end, you measure the upper qubit in the computational basis {|0⟩ , |1⟩}. The

35

probability of obtaining the state |j⟩ is,

P
(
|j · ⟩

)
= |⟨j · |ω⟩|2 =

∑
µ

∣∣⟨j Eµ |ω⟩
∣∣2

=
∑
µ

∣∣∣∑
ν

cν

(1√
2

∑
k

e2πikθν ⟨j|k⟩
)
⟨Eµ|Eν⟩

∣∣∣2
=

∑
µ

∣∣∣∑
ν

cν

(1√
2

∑
k

e2πikθνδjk

)
δµν

∣∣∣2
=

∑
µ

∣∣∣cµ(1√
2
e2πijθµ

)∣∣∣2 . (4.10)

We can simplify this result by assuming that the incoming state |Q⟩ was prepared
in an eigenstate |Eν⟩, giving

P
(
|j · ⟩

)
= |⟨j · |ω⟩|2 =

∑
µ

∣∣⟨j Eµ |ω⟩
∣∣2

=
∑
µ

∣∣∣(1√
2

∑
k

e2πikθν ⟨j|k⟩
)
⟨Eµ|Eν⟩

∣∣∣2
=

∣∣∣ 1√
2
e2πijθν

∣∣∣2
=

1

2
. (4.11)

As expected, there is an equal probability of detecting the upper single qubit in the
states |0⟩ and |1⟩. Instead of measuring the upper qubit, suppose we let it pass
through an inverse quantum Fourier transform, QFT†

1.

|0⟩ H QFT†
1

|Q⟩ U

|Ω⟩

Fig. 4

In Box 4.2 of QC1 we saw that QFT1 = H, so QFT†
1 = H† = H. The outgoing

state in this case is then,

|ω⟩ 7−→ |Ω⟩ =
∑
ν

cν

(1√
2

∑
k

e2πikθν QFT†
1|k⟩

)
|Eν⟩

=
∑
ν

cν

(1√
2

∑
k

e2πikθνH|k⟩
)
|Eν⟩ . (4.12)

36

If we use the fact that,

H|k⟩ = 1√
2

(
|0⟩+ (−1)k |1⟩

)
=

1√
2

(
e−πik0 |0⟩+ e−πik1 |1⟩

)
=

1√
2

∑
j

e−πikj |j⟩ , (4.13)

we finally get

|Ω⟩ =
∑
ν

cν

(1√
2

∑
k

e2πikθν
1√
2

∑
j

e−πikj |j⟩
)
|Eν⟩

=
∑
ν

cν

(1
2

∑
k,j

e−πik(j−2θν)|j⟩
)
|Eν⟩ . (4.14)

We conclude the experiment by measuring the upper qubit in the computational
basis. The probabilities are,

P
(
| l · ⟩

)
= |⟨l · |Ω⟩|2 =

∑
µ

∣∣⟨l Eµ |Ω⟩
∣∣2

=
∑
µ

∣∣∣∑
ν

cν

(1
2

∑
k,j

e−πik(j−2θν)⟨l|j⟩
)
⟨Eµ|Eν⟩

∣∣∣2
=

1

22

∑
µ

∣∣∣cµ∑
k

e−πik(l−2θµ)
∣∣∣2 . (4.15)

In case the incoming state |Q⟩ is in the eigenstate |Eν⟩,

P
(
| l · ⟩

)
=

1

22

∣∣∣ 1∑
k=0

e−πik(l−2θν)
∣∣∣2

=
1

22

∣∣∣ 1 + e−πi(l−2θν)
∣∣∣2 . (4.16)

Note that with the experimental result P
(
| l · ⟩

)
, we can determine the angle θν

and, therefore, the energy eigenvalue.

Exercise 4.4. Find θν in terms of P
(
| l · ⟩

)
.

Let us extend the previous experiment to more than one unitary,

U1|Eν⟩ = e2πiθ1,ν |Eν⟩ , U2|Eν⟩ = e2πiθ2,ν |Eν⟩ , (4.17)

where 0 ≤ θ1,ν , θ2,ν ≤ 1. The experimental set-up is shown below,

|0⟩ H

|0⟩ H |ω⟩

|Q⟩ U1 U2

Fig. 5

37

The outgoing state |ω⟩ is obtained as follows,

|0⟩|0⟩|Q⟩ 7−−−−→ 1√
2

∑
i1

|i1⟩
1√
2

∑
i2

|i2⟩
∑
ν

cν |Eν⟩

=
1√
22

∑
i1,i2

∑
ν

cν |i1 i2⟩|Eν⟩

7−−−−→ 1√
22

∑
i1,i2

∑
ν

cν |i1 i2⟩ e2πi i1θ1,ν |Eν⟩

7−−−−→ 1√
22

∑
i1,i2

∑
ν

cν |i1 i2⟩ e2πi(i1θ1,ν+i2θ2,ν)|Eν⟩ . (4.18)

That is,

|ω⟩ =
∑
ν

cν

(1√
22

∑
i1,i2

e2πi(i1θ1,ν+i2θ2,ν)|i1 i2⟩
)
|Eν⟩ . (4.19)

We now let the two-qubit system in the upper register enter an inverse quantum
Fourier transform, QFT†

2.

|0⟩ H

|0⟩ H |Ω⟩

|Q⟩ U1 U2

QFT†
2

Fig. 6

The action of this gate was given in Box 4.3 of QC1,

QFT†
2|i1 i2⟩ =

1

2

3∑
y=0

e−
πi
2
(2i1+i2)|y⟩ . (4.20)

The state that exists the inverse QFT gate is then,

|ω⟩ 7−→ |Ω⟩ =
∑
ν

cν

(1√
22

∑
i1,i2

e2πi(i1θ1,ν+i2θ2,ν) QFT†
2|i1 i2⟩

)
|Eν⟩

=
∑
ν

cν

(1√
22

∑
i1,i2

e2πi(i1θ1,ν+i2θ2,ν)
1

2

3∑
y=0

e−
πi
2
(2i1+i2)|y⟩

)
|Eν⟩

=
∑
ν

cν

(1

22

∑
i1,i2

∑
y

e2πi(i1θ1,ν+i2θ2,ν)e−
πi
2
(2i1+i2)|y⟩

)
|Eν⟩ . (4.21)

This expression simplifies notably if we consider the special case θ1,ν = 2θ2,ν , that
is, if U2

2 = U1. For simplicity, we define θ2,ν = θν . From here, θ1,ν = 2θν .

38

|0⟩ H

|0⟩ H |Ω⟩

|Q⟩ U2
2 U2

QFT†
2

Fig. 7

The output state in this case is,

|Ω⟩ =
∑
ν

cν

(1

22

∑
i1,i2

∑
y

e2πi(i12θν+i2θν)e−
πi
2
(2i1+i2)|y⟩

)
|Eν⟩

=
∑
ν

cν

(1

22

∑
i1,i2

∑
y

e2πi(2i1+i2)θνe−
πi
2
(2i1+i2)|y⟩

)
|Eν⟩

=
∑
ν

cν

(1

22

∑
x

∑
y

e2πixθνe−
πi
2
x|y⟩

)
|Eν⟩

=
∑
ν

cν

(1

22

∑
x,y

e−
2πi
4

x(y−4θν)|y⟩
)
|Eν⟩ . (4.22)

In the third step, we have used the decimal expression of the binary string i1 i2,
namely, x = 2i1 + i2. We conclude the experiment by measuring the upper register.
To compute the probabilities, though, we first note that since we have written
the upper two-qubit system in decimal form, we have to do the same with the
observational states. Denoting by |z · ⟩ the observational states of the upper register,
where z = 0, 1, 2, 3, the probabilities of observing them are,

P
(
| z · ⟩

)
= |⟨z · |Ω⟩|2 =

∑
µ

∣∣⟨z Eµ |Ω⟩
∣∣2

=
∑
µ

∣∣∣∑
ν

cν

(1

22

∑
x,y

e−
2πi
4

x(y−4θν)⟨z|y⟩
)
⟨Eµ|Eν⟩

∣∣∣2
=

1

(22)2

∑
µ

∣∣∣cµ∑
x

e−
2πi
22

x(z−22θµ)
∣∣∣2 . (4.23)

If the input state |Q⟩ is prepared in the eigenstate |Eν⟩, the corresponding proba-
bilities become

P
(
| z · ⟩

)
=

1

(22)2

∣∣∣ 3∑
x=0

e−
2πi
22

x(z−22θν)
∣∣∣2 . (4.24)

The angles θν , and consequently the eigenvalues Eν of the Hamiltonian, can be
determined using these probabilities.
Let us now generalize the above experiments to an arbitrary number A of ancillary

qubits as shown in the figure below,

39

|0⟩ H . . .

|0⟩ H . . .

...
... |ω⟩

|0⟩ H . . .

|Q⟩ UA UA−1 . . . U1

Fig. 8

The control gates are such that,

Ua|Eν⟩ = e2πiθa,ν |Eν⟩ , (4.25)

where a = 1, 2, . . . , A. The state appearing on the right side of the circuit is,

|0⟩⊗A|Q⟩ 7−−−−→ 1√
2A

∑
i1,i2,...,iA

|i1 i2 . . . iA⟩
∑
ν

cν |Eν⟩

7−−−−→ 1√
2A

∑
i1,i2,...,iA

∑
ν

cν |i1 i2 . . . iA⟩ e2πi(i1θ1,ν+i2θ2,ν+...+iAθA,ν)|Eν⟩ .

(4.26)

In the previous examples, we saw that this expression simplifies considerably if we
choose,

θA,ν = 20θν , θA−1,ν = 2θν , . . . θ2,ν = 2A−2θν , θ1,ν = 2A−1θν . (4.27)

In general,
θA−a+1,ν = 2a−1θν . (4.28)

With this simplification, the outgoing state becomes

|ω⟩ = 1√
2A

∑
i1,i2,...,iA

∑
ν

cν |i1 i2 . . . iA⟩ e2πi(i12
A−1θν+i22A−2θν+...+iAθν)|Eν⟩

=
1√
2A

∑
i1,i2,...,iA

∑
ν

cν |i1 i2 . . . iA⟩ e2πi(2
A−1i1+2A−1i2+...+iA)θν |Eν⟩ . (4.29)

Finally, using the decimal representation of the binary string i1 i2 . . . iA,

x = 2A−1i1 + 2A−2i2 + . . .+ 20iA =
A∑

a=1

2A−aia , (4.30)

we get,

|ω⟩ =
∑
ν

cν

(1√
2A

2A−1∑
x=0

e2πixθν |x⟩
)
|Eν⟩ . (4.31)

40

We now act on the upper register with the inverse quantum Fourier transform QFT†
A,

|0⟩ H . . .

|0⟩ H . . .

...
...

...
... |Ω⟩

|0⟩ H . . .

|Q⟩ UA UA−1 . . . U1

QFT†
A

Fig. 9

According to equation (4.61) of QC1,

QFT†
A|x⟩ =

1√
2A

2A−1∑
y=0

e−
2πi

2A
xy|y⟩ , (4.32)

and thus,

|Ω⟩ =
∑
ν

cν

(1√
2A

∑
x

e2πixθν QFT†
A|x⟩

)
|Eν⟩

=
∑
ν

cν

(1√
2A

∑
x

e2πixθν
(1√

2A

∑
y

e−
2πi

2A
xy|y⟩

))
|Eν⟩

=
∑
ν

cν

(1

2A

∑
x,y

e−
2πi

2A
x(y−2Aθν)|y⟩

)
|Eν⟩ . (4.33)

Similar to the previous example where we had two ancillary qubits, the probability
of measuring the state | z · ⟩ in the upper register is given by

P
(
| z · ⟩

)
=

1

(22)A

∑
µ

∣∣∣cµ∑
x

e−
2πi

2A
x(z−2Aθµ)

∣∣∣2 . (4.34)

In the special case that |Q⟩ is in the eigenstate |Eν⟩,

P
(
| z · ⟩

)
=

1

(22)A

∣∣∣ 2A−1∑
x=0

e−
2πi

2A
x(z−2Aθν)

∣∣∣2 . (4.35)

In this last example we have assumed an arbitrary number A of ancillary qubits
with no further considerations. Now, we want to discuss the implications that this
has on the estimation of the phase angles θν .
Consider the product xθν that appears in the exponential in (4.34). We know that

x =
∑A

a=1 2
A−aia is given in terms of the number of ancillary qubits A. However, we

have not considered the limitations that this finite number of ancillary qubits put

41

on the value of θν . In fact, θν can only have an approximate value, depending on
the number of ancillary qubits A. The reason for this is that any fractional number
between zero and one, such as θν , can be written in the binary system as

θν =
b1
21

+
b2
22

+
b3
23

+ . . .+
bN
2N

+ . . . =
N∑

n=1

bn
2n

+ . . . , (4.36)

where bn = 0, 1 and N is some positive integer number. In our case, with only A
ancillary qubits,

θν =
A∑

a=1

ba
2a

+ (4.37)

Thus, the greater the number of ancillary qubits, the better the approximation of
θν . Suppose that,

θAν =
A∑

a=1

ba
2a
, (4.38)

and θν = θAν + δν , where δν indicates all the contributions that cannot be obtained
using A ancillary qubits.
Using this, the outgoing state (4.33) becomes

|Ω⟩ =
∑
ν

cν

(1

2A

∑
x,y

e−
2πi

2A
x(y−2AθAν)e2πixδν |y⟩

)
|Eν⟩ , (4.39)

and the corresponding probability of measuring the state | z · ⟩ in the upper register
is,

P
(
| z · ⟩

)
=

1

(22)A

∑
µ

∣∣∣cµ∑
x

e−
2πi

2A
x(z−2AθAµ)e2πixδµ

∣∣∣2 . (4.40)

Note that, if we measure the upper register and always get the same result, that
is, if P

(
| z · ⟩

)
= 1, we know with certainty that we have found the exact angle,

θAµ = z/2A (in other words, δµ = 0). In fact, in this case,

P
(
| z · ⟩

)
=

1

22A

∑
µ

|cµ(1 + 1 + . . .+ 1)|2

=
1

22A

∑
µ

|cµ2A|2 =
∑
µ

|cµ|2 = 1 . (4.41)

On the contrary, the probability P
(
| z · ⟩

)
̸= 1 when δµ ̸= 0, indicating that we have

not found the exact value of the phase angle.
To conclude, let us return to our original quantum problem. Suppose we start with

an approximate ground-energy eigenstate provided by theoretical considerations,

|Ẽ0⟩ =
∑
ν

cν |Eν⟩ . (4.42)

We let this state pass through the QPE circuit discussed above and measure the
ancillary qubits. The probabilities are given in (4.40). The process is iterated until
the lowest angle and, consequently, the lowest energy is found.

42

Even though the QPE algorithm shows that, in principle, a quantum computer
can find the ground-state energy of a complex molecule in polynomial time, to run
the algorithm requires a quantum computer that is not expected to be built in the
near future. Because of this, new algorithms relying on future hybrid computers,
part classic, part quantum, have been developed.

4.2 The Variational Quantum Eigensolver

Both, the Quantum Phase Estimation (QPE) algorithm, discussed in the previ-
ous subsection, and the Variational Quantum Eigensolver (VQE) algorithm, intro-
duce here, can, in principle, solve the time-independent Schrödinger equation of a
large quantum system. The fundamental difference between the two is that, while
the former is an algorithm that requires machines built exclusively with quantum
components, the latter operates with computers made of quantum as well classical
components. The VQE is an example of what are called classical-quantum hybrid
algorithms . These are the types of algorithms that are expected to first supersede
classical algorithms given the current or near term available technology (NISQ era).
From the theoretical point of view, the difference between the two algorithms is

that the VQE is a variational algorithm and the QPE is not. As we will see, this is
connected to the future implementation of variational algorithms in NISQ devices
mentioned above. Thus, the VQE uses the variational principle of quantum mechan-
ics to find an approximate solution of the time-independent Schrödinger equation
that describes a complex quantum system. Having stated the main differences be-
tween these two approaches, let us now explain how the VQE operates.
As usual, we denote by |E0⟩, |E1⟩, |E2⟩, . . ., the set of orthonormal eigenstates of

the Hamiltonian and assume that there is no degeneracy, with E0 < E1 < E2 <
Any vector |ψ⟩ corresponding to a physical state of the quantum system is thus
written as a linear superposition of such eigenstates,

|ψ⟩ =
∑
ν

cν |Eν⟩ . (4.43)

The variational theorem affirms that the expectation value of the Hamiltonian for
any physical state is always equal to or greater than the expectation value of the
ground state,

⟨E0|Ĥ|E0⟩ ≤ ⟨ψ|Ĥ|ψ⟩ . (4.44)

Only when |ψ⟩ = |E0⟩, that is, when cν = δν0, do the equality holds.

Exercise 4.5. You should be able to prove this theorem.

Now, suppose we find a set of real parameters θ1, θ2, . . . , θD, that can be used to
uniquely identify every state of the system,

|ψ⟩ = |ψ(θ1, θ2, . . . , θD)⟩ . (4.45)

For instance, in QC1 we saw that there is a unique Bloch vector on the unit sphere,
|ψ⟩ = |ψ(θ, ϕ)⟩, where θ and ϕ are the spherical polar angles, associated to every
state of a two-level system.

Exercise 4.6. Show that, in general, a state vector in a Hilbert space of dimension
D requires 2(D − 1) parameters.

43

To simplify the notation, let us introduce the parameters vector θ = (θ1, θ2, . . . , θD)
and the corresponding space of parameters Eθ ∋ θ. We assume, moreover, that there
is a θ0 for which |ψ(θ0)⟩ = |E0⟩. Thus, according to the variational theorem,

⟨ψ(θ0)| Ĥ |ψ(θ0)⟩ ≤ ⟨ψ(θ)| Ĥ |ψ(θ)⟩ . (4.46)

When useful, we will use the following short-hand notation,

⟨ψ(θ)| Ĥ |ψ(θ)⟩ = ⟨Ĥ⟩(θ) = E(θ) , (4.47)

valid for any possible value of the parameter θ. The variational theorem, thus,
affirms that,

⟨Ĥ⟩(θ0) ≤ ⟨Ĥ⟩(θ) , (4.48)

or, equivalently,
E(θ0) ≤ E(θ) . (4.49)

Note that, since E(θ0) is nothing else that E0, then

E0 ≤ E(θ) . (4.50)

In order to find a good approximate value of E0, we start with a parameterized
state |ψ(θ̃)⟩, called the trial or ansatz state, and evaluate the expectation value

⟨Ĥ⟩(θ̃) = E(θ̃). We do the same for other points in the parameters space Eθ near

θ̃. That is, we compute ⟨Ĥ⟩(∆θ̃) = E(∆θ̃). Now, since the expectation value of
the Hamiltonian can be thought, mathematically speaking, as a multivariable real-
valued function, E : Eθ → R, θ 7→ E(θ) ∈ R, we can use an optimization device to

compare these results and provide us with the value θ ′ ∈ ∆θ̃ that corresponds to
the minimum value of E(θ) for all θ ∈ ∆θ̃. We then use this vector and the space

of parameters near it, ∆θ̃ ′, to compute ⟨Ĥ⟩(∆θ̃ ′) = E(∆θ̃ ′). We optimize again
and iterate this process until we find a value ⟨Ĥ⟩(θ∗) = E(θ∗) that is as closed to
E0 as required by the nature of the problem (or, more precisely, until we meet the
convergence criteria). Symbolically, we can write this process as follows,

⟨Ĥ⟩(∆θ̃) 7−→ · · · 7−→ ⟨Ĥ⟩(θ∗) ≳ ⟨Ĥ⟩(θ0) , (4.51)

that is,
E(∆θ̃) 7−→ · · · 7−→ E(θ∗) ≳ E(θ0) . (4.52)

In optimization theory, this iterative process is denoted by several equivalent nota-
tions,

min
θ
⟨ψ(θ)|Ĥ|ψ(θ)⟩ = min

θ
⟨Ĥ⟩(θ) = min

θ
E(θ) = E∗ ≳ E0 . (4.53)

Now that we have properly posed the problem, let us see how the variational
quantum eigensolver tackles it.

Exercise 4.7. Suppose a quantum system with Hamiltonian given by Ĥ = Z.
Starting with a generic parameterized state vector |ψ(θ̃, ϕ̃)⟩, explain in detail how
the variational method proceeds to find the lowest-energy state.

As we said, the VQE is a hybrid quantum-classical algorithm. The quantum
subroutine deals with the preparation of the quantum states and the evaluation of

44

the Hamiltonian expectation values. The optimization process is performed by a
classical device (that we will not discuss here).
We assume that any state of the system, |ψ(θ)⟩, can be simulated by a multi-qubit

state |Q(θ)⟩. In particular, the ansatz state |ψ(θ̃)⟩ is modeled by |Q(θ̃)⟩. The latter
is prepared by letting pass n qubits in the state |0⟩⊗n = |0⟩ through a parameterized

circuit U(θ̃),

U(θ̃) |0⟩ = |Q(θ̃)⟩ . (4.54)

This circuit U(θ̃) is built by combining Pauli gates, single-qubit gate rotations,
CNOT gates, and so on. After this, we need to evaluate the expectation value
of the Hamiltonian. To do this, the Hamiltonian operator is modeled by a linear
combination of Pauli operators. Remember that, in general, any Hamiltonian can
be written as

Ĥ =
∑

hA1...An σA1 ⊗ . . .⊗ σAn , (4.55)

where the σA’s are the Pauli gates X, Y, Z, for A = X, Y, Z, or the identity operator,
for A = I (see QC1, equation (4.71)). That is, we measure

E(θ̃) =
∑

hA1...An⟨0|U †(θ̃)σA1 ⊗ . . .⊗ σAnU(θ̃) |0⟩ . (4.56)

The VQE tells us that, from the computational point of view, it is more convenient
to estimate each of the terms with a quantum device,

⟨0|U †(θ̃)σA1 ⊗ . . .⊗ σAnU(θ̃) |0⟩ , (4.57)

and let the sum be done by a classical computer. This process is then repeated for
other parameters in the neighborhood of θ̃,

⟨0|U †(∆θ̃)σA1 ⊗ . . .⊗ σAnU(∆θ̃) |0⟩ , (4.58)

All these results (obtained from the quantum device) are then sent to a classical
optimizer. The optimizer tells us what is the set of parameters that minimizes
this function. The process is iterated until we meet the convergence criteria. In
summary,

min
θ

∑
hA1...An⟨0|U †(θ)σA1 ⊗ . . .⊗ σAnU(θ) |0⟩ = E∗ ≳ E0 . (4.59)

The above is an overview of the VQE that gives a broad idea of how the algorithm
works. However, there are many aspects of the VQE that were not mentioned and
are crucial to prove its future implementation and possible advantage. Let us men-
tion just a few. Firstly, how do we choose the ansatz state? One way of doing it is
by using conventional quantum chemistry theory. The theory will allow us to deter-
mine a state vector that is as close as possible to the correct ground state. However,
the ansatz state cannot be too accurate either because, if not, the ansatz circuit to
produce it could be too deep. Thus, a trade-off between accuracy and practical-
ity is necessary. Secondly, what is the best way of representing the Hamiltonian?
Above we have used the Pauli operators representation, however, ladder operators
employed in second quantization are also of common use. Thirdly, what about error
correction? NISQ algorithms are intended, by definition, to be run in machines that
are not fault-tolerant quantum computers. But, is it not possible that the countless

45

components and integrations between classical and quantum components could ren-
der the computation completely useless due to the high amount of errors produced?
Fourthly, and finally, is it true that the VQE is more efficient than classical algo-
rithms running in modern supercomputers? This has not yet been proved formally
(this is the reason why hybrid algorithms are also known as heuristic algorithms).
All these are current research topics.

4.3 Quantum Cryptography

In modern times, the need for secure communication are manifold. One way to
communicate securely is by encrypting the original message. That is, the text is
modified by the sender according to a set of specific operations and, after transferring
the message through a public communication channel, at the other end the receiver
applies the inverse operations (decodes the message). The set of transformations that
only the sender and the receiver know is what is called a private (cryptographic) key .
In addition to the secrecy of the private key, the key cannot be inferred or obtainable
by any means. It can be shown that, for binary messages, it suffices for the sender
and the receiver to share a randomly generated binary key.
The problem is then to provide the sender and the receiver with the binary key, and

to none else. The easier solution is, of course, to provide both of them with the key
before they separate. However, this is sometimes impractical or simply impossible
to realize in most situations. The question is then: how to distribute securely a
binary key to two parties separated in space?
The first key distribution protocol based on the principles of quantum mechan-

ics was proposed by Charles Bennett and Gilles Brassard in 1984. Several years
later, in 1991, Arthur Ekert suggested an alternative key distribution scheme that
also uses quantum mechanics. These two protocols are part of what nowadays is
known as quantum key distribution (QKD). Formally speaking, QKD is a subfield
of quantum cryptography , a broader research area that studies the encryption and
communication of information in a secure manner.

4.3.1 BB84 Protocol

Suppose that two parties, here denoted A and B, agree on the following communi-
cation protocol,

a′ a′

A a b′ b′ B

|0⟩ X H H b

Fig. 10. BB84 protocol.

a and a′ are binary bits obtained randomly and with equal probability from a trust-
ful source. The double lines indicate that the Pauli X gate and the Hadamard gate
are classical controlled-U gates determined by the values of a and a′, respectively.

46

The quantum state that exits from the Hadamard gate of A is,

|0⟩ CCX7−−−−→ |0⊕ a⟩ = |a⟩ CCH7−−−−→ Ha′ |a⟩ . (4.60)

Note that there are four possible states, depending on the values of a and a′.

Exercise 4.8. What are these four states?

Exercise 4.9. Show that

Ha′ |a⟩ =
(1√

2

∑
j

(−1)aj
)a′

|a⟩ . (4.61)

On the other side of the quantum communication channel, B receives the qubit
Ha′|a⟩ and applies to it a classical controlled-Hadamard gate determined by another
random generated bit b′,

Ha′|a⟩ CCH7−−−−→ Hb′(Ha′ |a⟩) = Hb′Ha′|a⟩ . (4.62)

Thus,

Hb′Ha′ |a⟩ =
(1√

2

∑
i

(−1)ai
)b′(1√

2

∑
j

(−1)aj
)a′

|a⟩

=
(1√

2

∑
i

(−1)ai
)b′+a′

|a⟩ =
(1√

2

∑
i

(−1)ai
)b′⊕a′

|a⟩ . (4.63)

Exercise 4.10. Write explicitly all these states?

After this, B measures the qubit Hb′Ha′|a⟩ in the computational basis {|0⟩, |1⟩}.
The probability that B measures the state |b⟩ is,

PB

(
|b⟩

)
=

∣∣⟨b|(1√
2

∑
i

(−1)ai
)b′⊕a′

|a⟩
∣∣2

=
∣∣(1√

2

∑
i

(−1)ai
)b′⊕a′

⟨b|a⟩
∣∣2 = 1

2

∣∣(∑
i

(−1)bi
)b′⊕a′∣∣2 . (4.64)

B knows, even before any communication with A, that there are two possibilities:
whether a′ = b′ or a′ ̸= b′. If a′ = b′, the state that exits from the Hadamard gate
of B is,

Ha′Ha′|a⟩ = |a⟩ , (4.65)

and the probability of measuring |a⟩ is equal to

PB

(
|b⟩

)
=

∣∣⟨b|a⟩∣∣2 = ∣∣δab|2 = δab . (4.66)

This result is rather obvious because H2 = I and, as stated by the protocol, the
state |a⟩ has equal probability of being |0⟩ and |1⟩. In the event that a′ ̸= b′,

Hb′Ha′|a⟩ = H|a⟩ = |(−1)a⟩ . (4.67)

47

That is, the outgoing state is |+⟩ or |−⟩ depending on the value of a. The probability
that B measures |b⟩ is then,

PB

(
|b⟩

)
=

1

2
. (4.68)

In conclusion, every time a′ = b′, the qubit measured by B turns out to be in
|b⟩ = |a⟩. In contrast, when a′ ̸= b′ , B can measure |0⟩ or |1⟩ with equal probability.
At this point, using a classical channel, A sends to B the value of the random

variable a′. If B notices that a′ ̸= b′, then, the result is discarded because the
correspondence between b and a is not unique. However, when a′ = b′, the two
parties agree that a = b and this result is kept to generate the shared key.
In order to generate a shared key that is long enough to communicate a complex

message, the above procedure is repeated as many times as necessary. Alternatively,
non-entangled single qubits can be used,

|0⟩⊗N (CCX)⊗N

7−−−−−−−→
N⊗
k=1

|ak⟩
(CCH)⊗N

7−−−−−−−→
N⊗
k=1

Ha′k |ak⟩ . (4.69)

And, on the other end of the communication channel,

N⊗
k=1

Ha′k |ak⟩
(CCH)⊗N

7−−−−−−−→
N⊗
k=1

Hb′k(Ha′k |ak⟩) . (4.70)

Exercise 4.11. Complete the argument.

This communication protocol is secure because any third party E between A and
B would inevitably disturb the state of the communication qubit. Therefore, any
deviation from the probability distribution found above would indicate the presence
of an eavesdropper. Finally, it can be proved that the greater the number N , the
higher the probability of knowing if the message was intercepted by a third party.

5 Error Correction and Fault Tolerance

How to detect and correct single qubit bit-flip errors is something we already dis-
cussed in our previous notes. There, we used the standard state vector formalism
of quantum mechanics to describe the effects of the environment on a single qubit.
However, since the qubit is an open system, a more appropriate approach (as you
now know) is the density operator formalism. This is the first thing we do in this
section. After this, we provide an introduction to the mathematics of the stabilizer
formalism as applied to quantum circuits. We then revisit the repetition code for
single-qubit errors, including bit flip and phase flip errors, and conclude with a quick
introduction to fault-tolerant quantum computing (just enough for you to know what
it is about and why it is so important for the future of quantum computers).

5.1 Single-Qubit Quantum Channels

Let us consider an n qubit interacting with its environment (see QC1, Subsection
5.1). We denote by ρQ(t) and ρe(t) their respective density operators at time t.
Suppose that initially the environment is in a pure state,

ρe(t0) = |e0⟩⟨e0| , (5.1)

48

and the qubit is decoupled from the environment. That is, the density operator of
the entire system is

ρQe(t0) = ρQ(t0)⊗ |e0⟩⟨e0| . (5.2)

As we know, the state operator of the qubit at any moment in time is obtained by
tracing out the environment,

ρQ(t) = Tret
(
ρQe(t)

)
= Tret

(
U(t, t0)ρQ(t0)⊗ |e0⟩⟨e0|U †(t, t0)

)
. (5.3)

The usual convention is to denote the basis vectors of the Hilbert space of the
environment at time t by |et⟩ = |k⟩e, so we have that

ρQ(t) =
∑
k

e⟨k|U(t, t0)|e0⟩ρQ(t0)
(
e⟨k|U(t, t0)|e0⟩

)†
=

∑
k

EkρQ(t0)E
†
k . (5.4)

In the present context, the Kraus operators (see definition in (2.76))

Ek = e⟨k|U(t, t0)|e0⟩ , (5.5)

are called error operators. Remember that they satisfy the completeness relation∑
k

E†
kEk = 1 . (5.6)

A quantum channel, or quantum map, is a superoperator Φ(t, t0) that takes

ρQ(t0) 7−→ ρQ(t) = Φ(t, t0)ρQ(t0) =
∑
k

EkρQ(t0)E
†
k . (5.7)

In this section, we want to apply these general considerations to the specific case of
a single qubit that interacts with its environment. For notation convenience, from
now on we will write ρq(t0) = ρ0 and ρq(t) = ρt. Thus,

ρt =
∑
k

Ekρ0E
†
k . (5.8)

Imagine that every time a single qubit |q0⟩ enters a communication channel, at
the other end we receive a qubit |qt⟩ = σa|q0⟩, where σa is one of the three Pauli
operators X, Y, Z. The state operator of the qubit we receive is then

ρt = |qt⟩⟨qt| = σa|q0⟩⟨q0|σa = σaρ0σa . (5.9)

Looking at (5.8), we recognize the error operator Ek = σa. Now, suppose that
instead of |qt⟩ = σa|q0⟩, we receive |qt⟩ = cσa|q0⟩, where c is a real constant. This
gives the state operator

ρt = |qt⟩⟨qt| = cσa|q0⟩⟨q0|cσa = cσaρ0cσa . (5.10)

In this case, the error operator is Ek = cσa. The value of c is obtained in the
following two equivalent ways,

1 = ⟨qt|qt⟩ = c2⟨q0|σ†
a †a q0⟩ = c2 (5.11)

49

or
1 =

∑
k

E†
kEk = c2σ†σa = c2 . (5.12)

It thus follows that c = 1. In fact, c2 is the probability that the initial state is
affected by σa. More generally,

|qt⟩ =
√

1− p I|q0⟩+
√
p σa|q0⟩ , (5.13)

where p is the probability that σa acts on the initial state and 1− p the probability
that it stays unperturbed. The corresponding density operator is then,

ρt = |qt⟩⟨qt| =
(√

1− p I|q0⟩+
√
p σa|q0⟩

)(√
1− p I⟨q0|+

√
p ⟨q0σa|

)
= (1− p)|q0⟩⟨q0|+ pσa|q0⟩⟨q0|σa

+
√

1− p√p |q0⟩⟨q0|σa +
√
p
√
1− p σa|q0⟩⟨q0| . (5.14)

Exercise 5.1. Show that the last two terms cancel each other.

This gives,

ρt = (1− p)ρ0 + p σaρ0σa ,

=
(√

1− p I
)
ρ0
(√

1− p I
)
+
(√

p σa
)
ρ0
(√

p σa
)
. (5.15)

We recognize two Kraus/error operators, E1 =
√
1− p I and E2 =

√
p σa.

Exercise 5.2. Show that these error operators satisfy the completeness relation.

An example of this, is the bit-flip channel ΦX(t, t0) = ΦX . It has σa = X,

ρt = ΦXρ0 = (1− p)ρ0 + pXρ0X . (5.16)

The question we now want to answer is: how is the Bloch vector of the original qubit
transformed under the action of the bit-flip channel? To this end, we use equation
(2.34), ρ = 1/2 (I +B ·σ), to write both the initial and final state operators ρ0 and
ρt and then compare the respective values of B0 and Bt. For the bit-flip channel,

ρt =
1

2

(
I +Bt · σ

)
= (1− p)ρ0 + pXρ0X

= (1− p) 1
2

(
I +B0 · σ

)
+ pX

1

2

(
I +B0 · σ

)
X

=
1

2

(
I +B0 · σ − pB0 · σ + pX B0 · σX

)
. (5.17)

Thus,
Bt · σ = B0 · σ − pB0 · σ + pX B0 · σX (5.18)

Exercise 5.3. Use this result to show that

Bt · σ = (Bt)xX + (Bt)yY + (Bt)zZ

= (B0)xX + (1− 2p)(B0)yY + (1− 2p)(B0)zZ . (5.19)

50

From here it follows that the Bloch vector is modified by the bit-flip channel accord-
ing to,

B0 7−→ Bt =

(Bt)x
(Bt)y
(Bt)z

 =

 (B0)x
(1− 2p)(B0)y
(1− 2p)(B0)z

 =

 1 0 0
0 1− 2p 0
0 0 1− 2p

B0 . (5.20)

For example, for the initial Bloch vectors,

B0 = [1 0 0]T 7−→ Bt = [1 0 0]T ,

B0 = [0 1 0]T 7−→ Bt = [0 (1− 2p) 0]T ,

B0 = [0 0 1]T 7−→ Bt = [0 0 (1− 2p)]T . (5.21)

Assuming that p < 1/2, then 0 < 1 − 2p < 1. We note that the bit-flip channel
contracts the y and z components of the Bloch vector associated to a single qubit
(the length of the x component does not change).

Exercise 5.4. Work out the details for the phase-flip channel (σa = Z), as well as
for the bit-phase-flip channel (σa = Y).

5.2 Stabilizers Circuits

Let |q⟩ represent the state of a single qubit, |q⟩ ∈ Hq
∼= C2. As we saw in QC1, Box

4.3, any unitary transformation U on a single-qubit state vector |q⟩ can be written as
a linear combination of elements of the single-qubit Pauli group P1 = {σA;±i,±1},
where A = I,X, Y, Z. That is,

U =
∑
A

aA σA . (5.22)

In general, of course, a state vector |q⟩ ∈ Hq will change under the action of an
operator U , U |q⟩ ≠ |q⟩. However, there are some specific vectors |q⟩S ∈ Hq that are
left unchanged by some transformations US,

US|q⟩S = |q⟩S . (5.23)

In algebraic jargon, we say that US leaves |q⟩S “fixed” or that US “stabilizes” |q⟩S.

Exercise 5.5. What are the state vectors in Hq that are stabilized by X, Y and
Z? Show that these vectors are unique. Conversely, show that X, Y and Z are, in
fact, the only operators that stabilize these vectors.

Exercise 5.6. Provide a visual representation of the previous exercise in terms of
the Bloch sphere.

Consider now a two qubit |q2⟩ ∈ Hq2
∼= C4. Any unitary transformation U on the

two qubit will be written as a linear combination of elements of the 2-qubit Pauli
group P2 = {σA;±i,±1}⊗2,

U =
∑
A,B

aAB σA σB . (5.24)

51

In general,

U |q2⟩ =
∑
A,B

aAB σA σB
∑
i,j

αij|i⟩|j⟩ =
∑
A,B

∑
i,j

aABσA|i⟩σB|j⟩ . (5.25)

Again, some two qubits will be modified by some unitaries, some will not. If

US|q2⟩S = |q2⟩S , (5.26)

we say that US stabilizes |q2⟩S. For example, the two qubit |0 0⟩ is stabilized by the
set of operators {I I, Z I, I Z, Z Z} and |++⟩ by {I I,X I, I X,X X}. Note that
the sum of two or more operators that stabilize a qubit does not stabilize it. By
convention, we will only consider operators that are products of Pauli matrices and
the identity,

MAB = σA σB , (5.27)

for some A and B.

Exercise 5.7. Show that |+ 0 ⟩ is stabilized by {I I,X I, I Z,X Z}.

Exercise 5.8. Show that the sets of operators that stabilize |0 0⟩, |++⟩ and |+ 0 ⟩
are, each of them individually, subgroups of the Pauli group P2.

Before moving to higher qubits, let us find some operators that stabilize the Bell
states |βij⟩ ∈ Hq2

∼= C4, where i, j = 0, 1,

|βij⟩ =
1√
2

[
|0 i⟩+ (−1)j|1 ī⟩

]
. (5.28)

(See QC1, equation (4.64).) Since X|i⟩ = |̄i⟩,

X X|βij⟩ =
1√
2

[
|1 ī⟩+ (−1)j|0 i⟩

]
=

(−1)j√
2

[
(−1)j|1 ī⟩+ |0 i⟩

]
= (−1)j|βij⟩ . (5.29)

Recalling that (with i =
√
−1),

Y |j⟩ = (−1)ji |j̄⟩ ,

Y |j̄⟩ = (−1)j̄i |¯̄j⟩ = (−1)j+1i |j⟩ = −(−1)ji |j⟩ , (5.30)

we get,

Y Y |βkj⟩ =
1√
2

[
i|1⟩(−1)ki |k̄⟩+ (−1)j(−1) i |0⟩(−1)(−1)ki |k⟩

]
=
−(−1)k√

2

[
|1 k̄⟩+ (−1)j|0 k⟩

]
= −(−1)k+j|βkj⟩ . (5.31)

Finally, since Z|i⟩ = (−1)i|i⟩,

Z Z|βij⟩ =
1√
2

[
|0⟩(−1)i|i⟩+ (−1)j(−1)|1⟩(−1)ī |̄i⟩

]
=

(−1)i√
2

[
|0 i⟩+ (−1)j+1+ī−i|1 ī⟩

]
= (−1)i|βij⟩ . (5.32)

52

That is, a Bell state |βij⟩ is stabilized by the following operators,[
(−1)jX X

]
|βij⟩ = |βij⟩ , (5.33)[

− (−1)i+jY Y
]
|βij⟩ = |βij⟩ , (5.34)[

(−1)iZ Z
]
|βij⟩ = |βij⟩ . (5.35)

Exercise 5.9. Show that the operators I I, X X, Y Y and Z Z commute between
them.

Exercise 5.10. Show that the operators in each of the sets of Exercise 5.8 commute
between them.

For three qubits, the situation is similar. Any three qubit |q3⟩ is stabilized by a
product of sigma matrices and the identity,

MABC |q3⟩ = σA σB σC |q3⟩ = |q3⟩ , (5.36)

for some A,B and C.

Exercise 5.11. Find the operators that stabilize the GHZ state 1/
√
2 (|0 0 0⟩ +

|1 1 1⟩).

We generalize to n qubits as follows. For any n qubit |qn⟩ ∈ Hqn , there are
operators MA1...An in the n-qubit Pauli group Pn = {σA;±i,±1}⊗n that leave the
qubit unchanged,

MA1...An|qn⟩ = σA1 . . . σAn|qn⟩ = |qn⟩ , (5.37)

for some A1, . . . , An. In other words, |qn⟩ is an eigenvector ofMA1...An with eigenvalue
one. The set of all these operators form a commutative subgroup of the n-qubit Pauli
group known as the stabilizer group of the n qubit |qn⟩,

{MA1...An} = S(|qn⟩) ⊂ Pn . (5.38)

Each operator in the stabilizer group, MA1...An ∈ S(|qn⟩), is called a stabilizer oper-
ator or simply a stabilizer .

Exercise 5.12. Justify why they form a subgroup of Pn.

Exercise 5.13. Why is it that (MA1...An)
2 = In?

That every stabilizer group is commutative is also easy to show. Suppose that M1

and M2 are two stabilizers of the n qubit |qn⟩. We must then have

M1M2|qn⟩ =M1(M2|qn⟩) =M1|qn⟩ = |qn⟩ , (5.39)

M2M1|qn⟩ =M2(M1|qn⟩) =M2|qn⟩ = |qn⟩ . (5.40)

That is, for any two stabilizers M1 and M2,

M1M2|qn⟩ =M2M1|qn⟩ . (5.41)

Assuming that |qn⟩S is not the null vector, we conclude that

[M1,M2] = 0 . (5.42)

If we consider several qubits inHqn , each with its own stabilizer group, the common
elements of these stabilizer groups form a stabilizer code. A stabilizer code is, thus,
the set of operators in Pn that stabilize the subspace spanned by these qubits.

53

Exercise 5.14. What are the stabilizer codes of the subspaces spanned by the
vectors given in Exercise 5.8?

Now that we know how to apply the stabilizer formalism to qubits, we want to
show how it is used to describe the gates of a quantum circuit. Suppose an n qubit
with stabilizer M ,

M |qn⟩ = |qn⟩ . (5.43)

If the qubit |qn⟩ enters a gate U , at the other end will exit the qubit

U |qn⟩ = UM |qn⟩ = UMU †(U |qn⟩) . (5.44)

That is, when the incoming qubit |qn⟩ is stabilized by M , then, the outgoing state
U |qn⟩ is stabilized by UMU †.
This indicates that instead of analyzing a quantum circuit by referring to the

evolution of the input state as it moves through the circuit, we can equivalently
describe it by the evolution of the stabilizer.

For example, instead of |0⟩ H7−−→ |+⟩, we can use Z
H7−−→ X,

|0⟩ H |+⟩ Z H X

Fig. 11

Similarly, we substitute |0⟩ Y7−−→ i |1⟩ by Z Y7−−→ −Z,

|0⟩ Y i |1⟩ Z Y −Z

Fig. 12

Exercise 5.15. Show that the state vector description |+⟩ S7−−→ S|+⟩ is equivalent
to X

S7−−→ Y in the stabilizer formalism.

Now, to produce entangled states, we need multi-qubit gates and they too have to
be represented in the language of stabilizers.
Recall that a generic controlled-U gate transforms

|i⟩|j⟩ CU7−−−→ |i⟩U i|j⟩ , (5.45)

where |i⟩ is the control qubit and |j⟩ the target qubit.

|i⟩

|j⟩ U

|i⟩

U i |j⟩

Fig. 13. The controlled-U gate.

Since the control qubit |i⟩ can be |0⟩ or |1⟩, it will be stabilized by Z or −Z,
respectively. Denoting these stabilizers by (−1)iZ, and using a similar for the target

54

qubit, we have that the incoming state is stabilized by (−1)iZ ⊗ (−1)jZ. On the
other side of the CU gate, we have that the upper qubit remains unchanged so
its stabilizer is still (−1)iZ. The lower qubit, though, is transformed according to
U i|j⟩. But, as we saw in (5.44), if the qubit |j⟩ is stabilized by (−1)jZ and it is
transformed by the unitary U i|j⟩, the new state will be stabilized by U i(−1)jZU i†.
The stabilizer representation of the CU gate is thus,

(−1)iZ(−1)j ⊗ Z CU7−−−−→ (−1)iZ ⊗ U i(−1)jZU i† . (5.46)

For example, for a CNOT gate, where U = X,

(−1)iZ ⊗ (−1)jZ CNOT7−−−−−−→ (−1)iZ ⊗X i(−1)jZX i . (5.47)

We can check this result by looking at the following equivalence between the state
vector and stabilizer formalism,

|0⟩|j⟩ CNOT7−−−−−→ |0⟩|j⟩ , Z ⊗ (−1)jZ CNOT7−−−−−→ Z ⊗X i(−1)jZX i ,

|1⟩|j⟩ CNOT7−−−−−→ |1⟩|j⟩ , −Z ⊗ (−1)jZ CNOT7−−−−−→ −Z ⊗X i(−1)jZX i . (5.48)

Exercise 5.16. Check this result by considering all possible cases.

As a final example, consider again the gate that creates the |β0⟩ state,

|0⟩ H

|0⟩
⊕ |β0⟩

Fig. 14. Reproduction of Figure 1.

At every step of the process the initial state changes as follows,

|0 0⟩ H⊗I7−−−−−→ 1√
2

(
|0 0⟩+ |1 0⟩

)
= |+ 0⟩

CNOT7−−−−−→ 1√
2

(
|0 0⟩+ |1 1⟩

)
= |β0⟩ . (5.49)

In the stabilizer representation,

Z Z
H⊗I7−−−−→ X Z

CNOT7−−−−−→ X X . (5.50)

Exercise 5.17. Repeat this for the general Bell state |βij⟩.

If you remember, at the beginning of our discussion on stabilizers we said that
the two qubit |0 0⟩ was stabilized by the set of operators {I I, Z I, I Z, Z Z}. But
in (5.50) we only have Z Z! The natural question then is: where did the other
stabilizers go? The same can be said about the states |+0⟩ and |β0⟩, with stabilizer
groups {I I,X I, I Z,X Z} and {I I,X X,Z Z}, respectively. How do we take into
account all the other group elements? One obvious way would be to write,

{I I, Z I, I Z, Z Z, } H⊗I7−−−−→ {I I,X I, I Z,X Z} CNOT7−−−−−→ {I I,X X,Z Z} . (5.51)

55

However, we can use the fact that stabilizers form a commutative group to only
indicate the group generators . For example, since

I I = (Z I)(Z I) , Z Z = (Z I)(I Z) , (5.52)

we only need the operators Z I and I Z to generate the group {I I, Z I, I Z, Z Z, }.
Similarly,

I I = (X I)(X I) , Z X = (X I)(I Z) , (5.53)

and, thus, we pick the operators X I and I Z to generate the stabilizer group
{I I,X I, I Z,X Z}. Finally, for {I I,X X,Z Z} we pick X X and Z Z because

I I = X X = Z Z . (5.54)

Thus, the process that creates the |β0⟩ state can be represented in the form

{Z I, I Z} H⊗I7−−−−→ {X I, I Z} CNOT7−−−−−→ {X X,Z Z} . (5.55)

Exercise 5.18. Reproduce a similar argument for the CU gate discussed above (in
particular, the CNOT gate).

5.3 Stabilizer QEC Codes

Having established how the stabilizer formalism describes quantum circuits, our next
task is to explain how it can be used to detect and correct errors that can occur
during the transmission of a qubit. We first examine the three-qubit repetition code
for bit-flip errors discussed in QC1, Subsection 5.4.
The first step is to create identical copies of the single-qubit basis states |0⟩ and
|1⟩ of Hq

∼= C2,
|i⟩ 7−→ |i⟩L = |i i i⟩ . (5.56)

The initial single qubit |q⟩ in Hq
∼= C2 then becomes a three qubit |q⟩L in an

extended Hilbert space Hq3
∼= C8 (the so called logical qubit Hilbert space),

|q⟩ =
∑
i

αi|i⟩ 7−→
∑
i

αi|i⟩L =
∑
i

αi|i i i⟩ = |q⟩L . (5.57)

The fact that a bit-flip error can occur to any of the three physical qubits is taken
into account by considering the following state vector,

|q⟩L 7−→ |q⟩E =
∑
i

αi|i i i⟩+
∑
i

αi |̄i i i⟩+
∑
i

αi|i ī i⟩+
∑
i

αi|i i ī⟩ . (5.58)

With the help of two ancilla qubits, each physical qubit is passed through a CNOT
gate to measure the error syndrome and correct the qubit that has been flipped.
The stabilizer formalism approaches the problem of correcting bit-flip errors dif-

ferently. The error syndrome is measured by gates that act on the physical qubits,
without the need of any ancilla qubit.
Consider a generic vector |i j k⟩ of (5.58). Suppose we let it pass through the gate

Z Z I,
Z Z I |i j k⟩ = (−1)i+j|i j k⟩ . (5.59)

56

We take note of the result. The eigenvalue of Z Z I is 1 when i = j, in which case the
outgoing state is |i i k⟩, and is equal to −1 when i ̸= j, in which case the outgoing
state is |i ī k⟩. We now take this qubit and send it to a I Z Z gate. In general,

I Z Z |i j k⟩ = (−1)j+k|i j k⟩ . (5.60)

Again, the eigenvalue of the operator I Z Z can be plus or minus one, depending
of the values of j and k. It is 1 when j = k and −1 when j ̸= k. We then have
four possibilities: i = j followed by j = k or j ̸= k, and i ̸= j followed by j = k or
j ̸= k. Only two of these possibilities correspond to errors that have to be corrected
(i ̸= j followed by j = k and i = j followed by j ̸= k). To illustrate how this works,
consider the following scenario. If we measure 1 for Z Z I, then we must have i = j.
Since we are considering only one bit flip at most, this means that there is no error
in the first and second qubits. Suppose we then measure −1 for I Z Z. This means
that j ̸= k. But, in the first measurement we found i = j, thus i = j ̸= k. We
conclude that the third qubit has been flipped and we must correct it by applying
a I I X gate. Finally, note that, since Z Z I and I Z Z commute, we can first apply
Z Z I and then I Z Z, or vice versa. The final result is the same.

Exercise 5.19. Repeat the previous argument for the other cases.

Exercise 5.20. How do you detect if the first or third qubits have been flipped?

Suppose that instead of a bit-flip error, the transmitted qubit undergoes an unex-
pected phase flip, that is,

|q⟩ = α0|0⟩+ α1|1⟩ 7−→ α0|0⟩ − α1|1⟩ . (5.61)

We would like to be able to correct these types of errors. For simplicity, suppose
that the initial qubit is one of the Hadamard basis states, |+⟩ or |−⟩. A phase-flip
error will then be

|±⟩ = 1√
2

(
|0⟩ ± |1⟩

)
7−→ 1√

2

(
|0⟩ ∓ |1⟩

)
= |∓⟩ . (5.62)

Thus, a phase flip |±⟩ 7→ |∓⟩ is somehow equivalent to a bit flip |i⟩ 7→ |̄i⟩. Since
X|i⟩ = |̄i⟩ and Z|i⟩ = (−1)iZ|i⟩, and, on the other hand, Z|±⟩ = |∓⟩ and X|±⟩ =
±|±⟩, we conclude that we can use the previous argument of bit-flip errors to correct
phase flips. We only need to change Z Z I and I Z Z by X X I and I X X. Let us
see this in more detail.
The three-qubit repetition code for phase-flip errors begins with the following

logical computational qubits,

|0⟩ 7−→ |0⟩L = |+ ++ ⟩ , |1⟩ 7−→ |1⟩L = | − −− ⟩ . (5.63)

The logical qubit is then,

|q⟩L =
1√
2

(
|+ ++ ⟩+ | − −− ⟩

)
=

1√
2

∑
i

|(−1)i (−1)i (−1)i ⟩ . (5.64)

57

Exercise 5.21. Design the circuit that creates the logical computational qubits.

If by chance a phase flip occurs in (5.64), for one of the three qubits we will
have |±⟩ 7→ |∓⟩ or, equivalently, |(−1)i ⟩ 7→ |(−1)i+1 ⟩. Note that this is completely
analogous to a bit flip in (5.57). Thus, the phase-flip error syndrome will be detected
applying the gates X X I and I X X (in whatever order you prefer because they
commute). Once the error has been detected, the phase is restored by applying a Z
gate to the appropriate qubit.

Exercise 5.22. Repeat everything we did above for the detection of bit-flip errors,
but now for phase-flip errors. Be careful with the notation.

To conclude, let us see how the stabilizer formalism applies to Shor’s nine-qubit
code. This is a code that corrects any possible error that could occur to a single
qubit, not only bit-flip or phase-flip errors. Since we have already shown that phase
flips are equivalent to bit flips, for brevity, let us consider only the bit flip error. In
this case, the logical computational qubits are prepared as follows,

|0⟩ 7−→ |0⟩L = (|0 0 0⟩+ |1 1 1⟩)⊗3 , (5.65)

|1⟩ 7−→ |1⟩L = (|0 0 0⟩ − |1 1 1⟩)⊗3 . (5.66)

Or, in more compact notation,

|i⟩ 7−→ |i⟩L = (|0 0 0⟩+ (−1)i|1 1 1⟩)⊗3

=
(∑

i

(−1)ij|j j j⟩
)⊗3

=
(∑

i

(−1)ij|j j j⟩
)(∑

i

(−1)ik|k k k⟩
)(∑

i

(−1)il|l l l⟩
)
. (5.67)

Note that we have extended the space from Hq
∼= C2 to Hq9

∼= C29 = C512.

Exercise 5.23. Design the circuit that creates the logical computational qubits.

The logical qubit is then

|q⟩L =
∑
i

αi

(∑
i

(−1)ij|j j j⟩
)(∑

i

(−1)ik|k k k⟩
)(∑

i

(−1)il|l l l⟩
)
. (5.68)

Suppose now that a bit flip occurs, for example,

|q⟩E =
∑
i

αi

(∑
i

(−1)ij|j j̄ j⟩
)(∑

i

(−1)ik|k k k⟩
)(∑

i

(−1)il|l l l⟩
)
. (5.69)

We detect it simply by letting the qubit pass through a (Z Z I) I⊗3 I⊗3 gate, take
note of the eigenvalue (that is, if we measure plus or minus one) and then let it
enter a (I Z Z) I⊗3 I⊗3 gate. The procedure is the same as above. Errors in the
other qubits are detected in a similar way.

Exercise 5.24. Write down the gates needed to detect other bit-flip errors.

58

For phase-flip errors, we use Hadamard gates to prepare the logical qubit in the
state

|q⟩L =
∑
i

αi

(∑
i

(−1)ij|(−1)j (−1)j (−1)j⟩
)

(∑
i

(−1)ik|(−1)k (−1)k (−1)k⟩
)(∑

i

(−1)il|(−1)l (−1)l (−1)l⟩
)
. (5.70)

Error syndromes are detected by using gates made of products of Pauli gates such
as, for example, (X X I) I⊗3 I⊗3 and (I X X) I⊗3 I⊗3. The error, if any, is corrected
by applying the Pauli gate Z to the qubit whose phase was changed during the
transmission. In our example, the gate is (I Z I) I⊗3 I⊗3.

Exercise 5.25. Provide all the details to complete the above argument.

5.4 Fault-Tolerant QEC

Fault tolerance is based on the realistic projection that future quantum computers
will not be perfect and errors will certainly occur during the computational process.
The goal of fault-tolerance quantum computing is to develop a complete set of pro-
cedures to ensure that the results obtained by using imperfect quantum computers
are nonetheless reliable. The quantum circuit must, then, be designed so that in
case there is an error in the middle of the process, the error is promptly corrected
and does not propagate uncontrollably to other components of the circuit. In other
words, the goal of fault-tolerance quantum computing is to keep errors under control.
In the previous section we saw how the repetition code protects a single qubit from

undesirable bit and phase flips. But, we have not discussed how the logical qubit,
which is created to protect the single qubit during transmission, transforms when it
enters a gate. These gates, as well, have to be designed so that they mitigate the
errors and they do not propagate inside the circuit. Finally, the circuits built to
correct errors are also prone to errors and these have to be corrected too.
This will be the subject of future notes.

6 Bibliography

In addition to the references given in our previous review paper, you may want
to consult the free resources listed below. The various courses taught by Daniel
Gottesman at Perimeter Institute are worth watching.

[1] S. Aaronson, “Introduction to Quantum Information Science II: Lecture Notes”.

[2] Y. Cao et al., “Quantum Chemistry in the Age of Quantum Computing”.

[3] A. Childs, “Lecture Notes on Quantum Algorithms”.

[4] S. Devitt et al., “Quantum Error Correction for Beginners”.

[5] D. Gottesman, “Stabilizer Codes and Quantum Error Correction”.

[6] D. Lidar, “Lecture Notes on the Theory of Open Quantum Systems”.

59

[7] S. McArdle et al., “Quantum Computational Chemistry”.

[8] R. O’Donnell & J. Wright, “Quantum Computation”.

[9] J. Tilly et al., “The Variational Quantum Eigensolver”.

[10] S. Wilde, “From Classical to Quantum Shannon Theory”.

[11] O. Zapata, “A Short Introduction to Quantum Computing for Physicists”.

60

Index

Additivity of the von Neumann
entropy, 31

Ansatz (trial) state, 44

Bayes’ theorem, 20
Binary probability distribution, 22
Bit (information unit), 20
Bit-flip channel, 50
Bit-phase-flip channel, 51
Bloch ball, 9
Bloch vector, 8

Channel (quantum), 49
Classical-quantum hybrid algorithm,

43
Conditional information content of

two events, 23
Conditional mutual information, 26
Conditional relative entropy, 28
Conditional von Neumann entropy, 32

Density operator formalism, 5
Discrimination, 27
Divergence, 27

Fault tolerance, 59

Group generators, 56

Heuristic algorithms, 46

Independent systems, 19
Information content of a single event,

20

Joint information content of two
events, 23

Joint probability, 19
Joint relative entropy, 28
Joint von Neumann entropy, 31

Kraus operator, 15

Marginal conditional entropy, 23
Marginal probability, 20

Mutual information of two
probability distributions, 25

Mutual quantum information, 32

Phase angle, 35
Phase-flip channel, 51
Private (cryptographic) key, 46

Quantum channel, 13
Quantum cryptography, 46
Quantum key distribution (QKD), 46
Quantum map, 13

Reduced von Neumann entropy, 30
Relative entropy between two events,

27
Relative entropy between two

probability distributions, 27
Relative von Neumann entropy, 32

Shannon conditional entropy, 24
Shannon conditional entropy of two

events, 23
Shannon entropy of a probability

distribution, 21
Shannon entropy of a single event, 20
Shannon joint entropy, 23
Shannon joint entropy of two events,

23
Shannon marginal joint Shannon

entropy, 23
Stabilizer, 53
Stabilizer code, 53
Stabilizer group, 53
Stabilizer operator, 53
State operator, 7
Strong subadditivity, 26
Subadditivity, 31
Superoperator, 13

Trial (ansatz) state, 44

Variational algorithm, 43
von Neumann entropy, 28

61

An Introduction to

Portfolio Optimization

with Quantum Computers

Oswaldo Zapata1

Abstract

The purposes of this review article is to provide a self-contained introduction
to one of the most promising applications of quantum computing to finance:
portfolio optimization. In particular, we focus on the Quantum Approximate
Optimization Algorithm (QAOA). These notes have been written so that any-
body with an intermediate knowledge of linear algebra, calculus and quantum
physics can read it. Moreover, tens of exercises have been included to help
the reader fully grasp the subject matter.

1 Introduction 2

2 Quantum Computing Review 3
2.1 Main Concepts . 3
2.2 Computational Errors and Fault Tolerance 7
2.3 Hybrid Quantum-Classical Algorithms 9

3 Elements of Optimization Theory 10
3.1 Continuous Optimization . 16

3.1.1 Unconstrained Problems . 16
3.1.2 Constrained Problems . 22

3.2 Dual Optimization Problems . 28
3.3 Integer Programs . 30

4 Classical Portfolio Optimization Theory 33
4.1 Mathematical Description of an Investment Portfolio 33
4.2 The Mean-Variance Model . 37
4.3 Portfolio Optimization as a Quadratic Programming 47

5 Quantum Portfolio Optimization 51
5.1 The Quantum Approximate Optimization Algorithm 51
5.2 Portfolio Optimization via the QAOA 51

6 Bibliography 58

1Please send your feedback to zapata.oswaldo@gmail.com.

ar
X

iv
:s

ub
m

it/
58

58
51

5
 [

he
p-

th
]

 1
6

Se
p

20
24

1 Introduction

The potential applications of quantum computing to finance are many and, more
importantly, they seem to be just around the corner. Rightly so, in recent years
a growing number of survey papers have been published reviewing the state of the
field. These articles, though, have been written for the expert and are difficult to
read for the uninitiated. The purpose of the present notes is precisely to provide to
professional physicists and engineers, as well as students, with only some elementary
knowledge of undergraduate mathematics and intermediate quantum physics, the
necessary theoretical background to understand these review articles as well as to
provide an entry point to the specialized research literature.
You may think that in order to apply quantum computing to financial problems,

a sound knowledge of both subjects, quantum physic and finance, is required. This
is certainly true if you want to have a broad and deep understanding of the subject,
however, our goal here is more humble and we limit ourselves to basic results of
quantum computing as applied to portfolio optimization. Even this simple purpose,
though, requires a background knowledge in areas not usually covered in standard
physics curricula. This is the reason why, in contrast to more advanced survey
papers, we review optimization theory in some detail as well as the basics of modern
portfolio theory.
The paper is organized as follows. We start in Section 2 with a quick overview of

quantum computing. For a more complete introduction, check my two companion
review articles in the Bibliography. In Section 3, we provide an introduction to
optimization theory. Since this is a vast subject with many practical applications,
we focus only on the concepts needed for portfolio optimization. In Section 4, we
define a financial portfolio and explain what it means to optimize it. In Section 5, we
put into practice everything learned so far and explain how quantum computers can,
in principle, help optimize investment portfolios. It should be noted that Sections
2, 3 and 4, with the exception of Subsection 4.3, are independent from each other
and can be read in any order.

2

2 Quantum Computing Review

In few words, quantum computation is the quantum mechanical way of solving a
computational problem. That is, quantum computation uses the principles and
mathematical formalism of quantum mechanics, such as state vectors, unitary op-
erators and measurements, to arrive at the logical conclusion of a certain compu-
tational problem. A quantum computer, on the other hand, is the physical device
that realizes the quantum computational process we are interested in. For decades
it was thought that the only machines that could ever be able to perform quantum
computations were quantum computers built exclusively with quantum components.
In this section, we will see that this is, in fact, no more true. Nowadays, experts
believe that the first machines that will improve upon classical super computers will
be hybrid devices made of quantum and classical parts working in tandem.
This section is organized as follows. In Subsections 2.1 and 2.2, we review some

basic concepts of quantum computing, in particular, the circuit model of quantum
computation and the importance of error correction. Subsection 2.3 is meant as
a preliminary introduction to the hybrid quantum-classical computational models
mentioned above.

2.1 Main Concepts

I have already provided a rather exhaustive introduction to quantum computing
in QC1 and QC2. If you find the following discussion too short, take a look at
these papers or the corresponding literature. However, be assured that we will not
need everything discussed there. The following review emphasizes only the main
theoretical ideas of quantum computing and the practical difficulties scientists face
when trying to implement these ideas in the laboratory.
Let us start with the most basic concepts. A model of computation, broadly

speaking, is the logical way to proceed given some basic elements and instructions.
More precisely, a model of computation is defined by a set of abstract objects and
a set of elementary operations on these objects. An algorithm is a sequence of
precise instructions within a model of computation, created specifically to solve a
computational problem.
For example, the Boolean or binary model of computation is based on the so called

Boolean algebra. In a Boolean algebra there are only two elements, conventionally
denoted by 0 and 1, and three elementary operations, called NOT, AND and OR. If
we denote any two arbitrary elements by i, j = 0, 1, and use the standard notation
of the arithmetic system, the elementary operations are defined as follows,

NOT (i) = NOT i = ī = 1− i , (2.1)

AND (i, j) = iAND j = ij , (2.2)

OR (i, j) = iOR j = i+ j − ij . (2.3)

In the context of computer science, an element i of the Boolean algebra is known as
a binary digit or bit , for short. The elementary operations are called Boolean logical
gates .

Exercise 2.1. Work out explicitly the action of each logical gate on the bits 0 and
1.

3

https://arxiv.org/abs/2306.09388
http://bit.ly/ozapataQC2

A Boolean circuit is a sequence of Boolean logical gates. As is usually the case for
electric circuits, Boolean circuits are often represented visually by circuit diagrams .
Since every Boolean circuit is a deterministic process (because the action of each
individual gate is, in fact, deterministic), we have that for every string of bits that
enters a Boolean circuit (the input), there is a unique string of bits that exists it
(the output). Any Boolean circuit, hence, defines a unique Boolean function. The
reverse problem is also interesting: given a Boolean function, what is the Boolean
circuit that realizes it? In this case, though, it can be proved that the circuit is not
unique. For instance, some circuits may contain more logical gates than others. A
circuit that can solve a problem with the less logical gates than others is said to be
more efficient .
The analysis of the depth (size) and complexity of a circuit, that is, the number

of gates employed to performed a computation, is called circuit complexity . For
example, it decides whether a problem can or cannot be solved by certain model
of computation. In addition to studying theoretical problems, circuit complexity
is also of mayor practical importance. Suppose that, for example, the NOT gate
we have built sometimes gives the wrong result. That is, when the bit i enters our
NOT gate, on the other side sometimes we read the same bit i instead of ī. This
is known as a computational error . If we use many of these faulty NOT gates in
a circuit, the risk is that the error propagates through the circuit, giving, possibly,
a wrong computational result. Obviously, the deeper the circuit, the greater the
probability that the final computational result will be wrong. It is, thus, crucial to
know the level of error that an algorithm can tolerate. Since errors are unavoidable,
it is obvious that this posed a serious concern in the earlier stages of our modern
digital era.
Fortunately, by the mid-20th century, physicists have already discovered the elec-

tronic components needed to built reliable machines based on the binary circuit
model of computation. They discovered that they could build large computational
devices whose components were in one-to-one correspondence with the Boolean al-
gebra. They are what we call today digital computers or, simply, computers. The
solution of any computational problem was thus reduced to the following steps: 1.
translate the computational problem to an equivalent Boolean function, 2. find the
instructions, that is, the algorithm, that solves it, 3. wait for the machine to do its
job. It was believed that, thanks to digital computers, the solution to any solvable
problem was just a matter of time. The purpose of practical computer science was
then to discover more efficient algorithms and more powerful computers.
The quantum model of computation is a completely different logical system. In

contrast to the binary model of computation, the fundamental ideas of this model
are based, as its name indicates, on the principles of quantum mechanics. Basically,
in quantum computation, we do not deal with two different set of objects, say ones
and zeros, but with their linear superposition. Instead of bits, we now have qubits
(quantum binary digits). Moreover, the quantum logical gates are unitary transfor-
mations on qubits. A quantum circuit is a sequence of quantum gates connected by
quantum channels by means of which the qubits are transferred. As in any quantum
experiment, at the end of the quantum circuit, there is a measurement. According
to the postulates of quantum mechanics, when a qubit passes through a quantum
gate or circuit, in general, there is no certainty about the result of the measurement.
In other words, the result is probabilistic and not deterministic as in the binary
(classical) case. A quantum algorithm is a specific set of prescriptions, including

4

the initial qubit, the arrangement of gates and the appropriate measurements at
the end, intended to solve a computational problem. All these concepts are at the
heart of a contemporary scientific paradigm known as the quantum circuit model of
computation. The purpose of this model, at least for those scientists interested in
the physical applications of the theory, is the development of the machines that will
implement this model. These devices are the so called quantum computers .
Let us see in more detail some of the basic components of the quantum circuit

model of computation.
A single qubit is the simplest element of this model. If we denote by |0⟩ and |1⟩

the two classical states 0 and 1, any single qubit |q⟩ will be a liner superposition of
these states,

|q⟩ = α0 |0⟩+ α1 |1⟩ =
2∑

i=1

αi |i⟩ , (2.4)

where α0 and α1 are complex numbers. The states |0⟩ and |1⟩ are called the compu-
tational basis states . Quantum mechanic affirms that the probability of measuring
the single qubit |q⟩ in state |i⟩ is |αi|2.
An n qubit is, in general, an entangled state of n single qubits. It is expressed as

follows,

|Q⟩ =
∑

i1,...,in

αi1...in |i1 . . . in⟩ , (2.5)

where every bit i1, . . . , in in the string i1 . . . in takes the values 0 and 1 and the
coefficients αi1...in ’s are complex numbers. Note that some states of the n qubit are
not entangled. For example, the following product states are non-entangled states,

|i . . . i⟩ = |i⟩⊗n . (2.6)

A quantum gate is a unitary transformation on an input qubit. For instance, a
single-qubit gate is a unitary transformation on a single qubit,

|q⟩ 7−→ U |q⟩ =
2∑

i=1

αi U |i⟩ , (2.7)

where, by definition of unit operator, ⟨q′|U †U |q⟩ = ⟨q′|q⟩. Examples of such single-
qubit gates are the Pauli gates ,

X |0⟩ = |1⟩ , X |1⟩ = |0⟩ , (2.8)

Y |0⟩ = i |1⟩ , Y |1⟩ = −i |0⟩ , (2.9)

Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ = eiπ |1⟩ . (2.10)

Exercise 2.2. Is it clear for you why the X gate is the quantum analog of the
classical NOT gate?

Exercise 2.3. Write in a compact form the action of the Pauli gates on general
single qubits.

The Pauli gate Z is a special case, when ϕ = π, of the relative phase gate (phase
shift gate),

P (ϕ) |0⟩ = |0⟩ , P (ϕ) |1⟩ = eiϕ |1⟩ . (2.11)

5

Each of the following operators, known as rotation gates , is a single-qubit rotation
of θa radians about the a axis,

Ra(θa) = cos(θa/2)I − i sin(θa/2)σa , (2.12)

where I is the identity operator and σa, with a = x, y, z, is another notation for the
Pauli gates (σx = X, σy = Y and σz = Z).

Exercise 2.4. Under which physical conditions is correct to say that Rx(π) = X?

In general, for an n-qubit gate acting on an n qubit,

|Q⟩ 7−→ U |Q⟩ =
∑

i1,...,in

αi1...inU |i1 . . . in⟩ , (2.13)

with UU † = In.
The CNOT gate is an example of a two-qubit gate,

CNOT |i j⟩ = |i j ⊕ i⟩ , (2.14)

where the symbol ⊕ denotes the binary sum, j ⊕ i = (j + i)mod2.

Exercise 2.5. How does a CNOT gate act on an arbitrary two-qubit?

Any unitary transformation, it can be shown, can be approximated by a finite
quantum circuit (that is, a circuit made of a finite number of quantum gates),

|Q⟩ 7−→ UC |Q⟩ ≈ UN . . . U1 |Q⟩ . (2.15)

Furthermore, just as any classical circuit can be decomposed into a sequence of
NOT, AND and OR gates, any quantum circuit can be thought of as a composition
of a finite number of elementary quantum gates. Any such finite set of gates is called
a set of universal quantum gates . For example, the rotation gates, the phase shift
gate and the CNOT gate, together form a universal set of quantum gates.
In quantum mechanics, any physical measurement is associated to a Hermitian

operator called an observable, M = M †. Because the Pauli operators, as well their
tensor products, are Hermitian,

σa = σ†
a (2.16)

σa1 . . . σaN = (σa1 . . . σaN)
† , (2.17)

they are often used to express any measurement performed on a quantum circuit.
Since, in general, a measurement has an unpredictable effect on a quantum system
(in contrast to classical systems where the effects of a measurement are insignificant),
the measurement is an integral part of the quantum computational process. This
is why we must always specify the measurements to be performed at the end of a
quantum circuit. The outcomes are then probabilistic instead of deterministic.
After this quick survey of both the binary and quantum models of computation,

you may be asking yourself: why do we need quantum computers if we already have
classical (digital) computers which have been shown to be extremely reliable for
solving most practical computational problems?

6

There are two main reasons to believe that, in some instances, quantum computers
will supersede classical computers. The first reason is that quantum computers may
solve problems much faster than classical computers. This is what is meant when it
is said that quantum computers will be more “efficient” or “powerful” than classical
computers. In practical terms, this means that, eventually, quantum computers
will be much smaller (less complex) than classical computers built with the same
computational purpose in mind. The second rationale behind the growing interest
in quantum computing is that quantum computers will probably (there is no formal
proof of it) be able to solve computational problems that classical computers are
incapable to solve. That is, scientists expect them to solve problems that even the
most powerful digital computers we can imagine cannot solve.

2.2 Computational Errors and Fault Tolerance

It is expected that future quantum computers, at least in the earlier stages of de-
velopment, will not work exactly as described above. In other words, they will be
prone to computational errors . The control of the propagation of these errors is a
critical task in the progress toward a reliable quantum computer.
At the beginning of the modern digital era, digital components were also far from

perfect and there was a need for error correction, that is, methods for detecting and
correcting errors in the computational process. Nowadays, however, electronic com-
ponents are so accurate that the probability of a computational error is insignificant
and so there is no need for error correction.
One of the reasons why quantum circuit components are so unreliable is that it

is very difficult to isolate them from their environments. In fact, these interactions
are so drastic that they destroy the quantum mechanical behavior of the circuit ele-
ments. This effect, very well-known in quantum mechanics, is known as decoherence.
This destructive effect of the environment has compelled physicists and engineers
to develop new techniques to mitigate the influence of external factors on circuit
components. On the other hand, theoretical physicists and computer scientists have
invented procedures to detect and correct the various types of errors that may occur
to these “noisy” quantum computers.
As an example of a concrete way experts have created to cope with decoherence,

consider the bit-flip error that may occur in the propagation of a qubit from one
gate to the other.
In the classical case, a bit flip is the only possible error, i → ī. In order to protect

it, we copy it and send several identical copies of it. That is, instead of i, we send
i i i. If one of the bits is flipped, for example, if we receive i ī i instead of i i i, we
measure the three bits, detect that the second has been flipped and then correct it.
The whole process can be summarized as follows,

i
encode−−−−−→ i i i

send (error occurs)−−−−−−−−−−−−→ i ī i
detect−−−−→ correct−−−−−→ i i i

decode−−−−−→ i (2.18)

Note that this method would not work if several errors could occur simultaneously.
In fact, the majority voting strategy we just used will “correct” the wrong bit. For
example,

i
encode−−−−−→ i i i

send (errors occur)−−−−−−−−−−−−→ i ī ī
detect−−−−→ correct−−−−−→ ī ī ī

decode−−−−−→ ī (2.19)

7

By repeating the initial bit many more times and assuming that the probability that
an error occurs is very small, this correction procedure is completely reliable.
The bit-flip quantum repetition code is similar. However, there are some funda-

mental differences. Similar to the classical case, instead of sending one single qubit
|q⟩, we send a three qubit |q⟩L,

|q⟩ =
2∑

i=1

αi |i⟩
encode−−−−−→ |q⟩L =

2∑
i=1

αi |i i i⟩
send−−−→ (2.20)

To distinguish |q⟩L from the the initial qubit |q⟩, the former is called the logical
qubit and each of the state vectors in |i⟩ |i⟩ |i⟩ are the physical qubits . Now, in the
process of transmitting the qubit, errors may occur. In our example, suppose that
it is a bit flip. For the initial single qubit |q⟩ this would have meant

|q⟩ =
2∑

i=1

αi |i⟩ −→
2∑

i=1

αi |̄i⟩ , (2.21)

however, since we are sending a logical three qubit, the error can now occur in any
of the three physical qubits. Suppose that it is the second physical qubit which is
flipped,

|q⟩ =
2∑

i=1

αi |i⟩
encode−−−−−→ |q⟩L =

2∑
i=1

αi |i i i⟩
send (error occurs)−−−−−−−−−−−−→

2∑
i=1

αi |i ī i⟩ (2.22)

The detection and correction of an error in a qubit is not as simple as in the classical
case. In fact, we can measure a classical bit an leave it almost undisturbed. However,
according to the principles of quantum mechanic, the measurement of a qubit will
project it along one of the observable states. To avoid this, we perform a parity
check . I already explained how to do this in QC1, Subsection 5.2, and I will not
repeat it here. After the identification of the error, we correct it and recover the
initial qubit. The entire process can be summarized as follows,

|q⟩ =
2∑

i=1

αi |i⟩
encode−−−−−→ |q⟩L =

2∑
i=1

αi |i i i⟩
send (error occurs)−−−−−−−−−−−−→

2∑
i=1

αi |i ī i⟩

parity check−−−−−−−−→ correct−−−−−→ |q⟩L =
2∑

i=1

αi |i i i⟩
decode−−−−−→

2∑
i=1

αi |i⟩ = |q⟩

Other types of errors can occur and similar procedures have been created to detect
and correct them. In addition to these errors related to the transmission of qubits,
gates can also produce errors. Imagine, for example, that you expect a qubit |i⟩
to exit a gate but instead the qubit |̄i⟩ exists it. What is worse, a qubit that is
transferred through a noisy channel can enter a faulty gate. If the two errors add
up, the final qubit could be unrecognizable. Thus, if we do not pay attention, the
errors can propagate throughout the circuit, making the final computation unusable.
Finally, since the error correction process, that is, the encoding, detection and

correction of errors, is done also by quantum devices, the latter will inevitably create
additional errors. Error correction, hence, implies larger quantum computers and,
thus, a higher probability that the computational result will be incorrect. However,

8

it has been proven that, under certain conditions, correction codes can make the
computational error as small as desired. A fault-tolerant quantum computer is a
quantum computer built such that the errors occurring in the logical qubits at every
stage of the process are corrected along the way so that the final computational
result is reliable. This, however, is still too far out in the future.

2.3 Hybrid Quantum-Classical Algorithms

For years it was thought that quantum computers had to be built exclusively with
quantum components. This seemed obvious: given that we wanted to demonstrate
the superiority of quantum over classical computation, the quantum device had to
be purely quantum. The main obstacles in front of this ideal goal were, and still are,
the development of new hardware (less noisy) and the invention of the appropriate
quantum error correcting codes. This future situation is known as the fault-tolerant
quantum era.
However, in recent years, scientists have accepted that fault-tolerant quantum

computers will not be available any time soon. They started, then, to look for more
realistic algorithms that could be implemented in near-term quantum computers,
characterized by a moderate amount of noise and a relatively small number of qubits
and gates. This is the moment we are living right now and is called the Noisy-
Intermediate Scale Quantum era (NISQ era). According to the experts, we will stay
several years (even decades) in this stage of development of the quantum technology
before reaching fault tolerance.
The algorithms they expect to be implemented in the near term are the so called

hybrid quantum-classical algorithms . They combine a quantum and a classical part.
The quantum part tackles a problem that has been proven to be hard for classical
computers while, on the other hand, the classical computer performs an easy task.
The variational quantum algorithms (VQAs) we will discuss in these notes are

NISQ algorithms, that is, hybrid quantum-classical algorithms devised to prove
quantum advantage (practical quantum supremacy) in the near future. Since many
problems, not only in physics and chemistry but also, as we will see in the last
section, in finance, have a common basic structure, the techniques proper to VQAs
can be applied to a wide variety of situations.
It is common to hear that some variational quantum algorithms, in particular the

quantum approximate optimization algorithm (QAOQ) we will present below, are
heuristic. By this it is meant that even though there is so far no rigorous proof
that they are more efficient than the known classical algorithms, there are good
theoretical reasons to be optimistic. The promise is that future results may show
their advantage. The implementation of these types of algorithms, though, may
turn out to be trickier than expected by some of the most enthusiastic supporters
of these models.
With this brief introduction to quantum computing, let us now cover everything

we need to know about optimization theory to fully understand the QAOA.

9

3 Elements of Optimization Theory

Optimization theory is a vast topic with many applications in pure science, engi-
neering and finance. In this section, however, we content ourselves with a brief
introductory discussion of the main concepts and techniques needed for the opti-
mization of financial portfolios.
The basic idea of optimization is easy to understand. Suppose that you are given

a real-valued function that depends on a set of parameters and you are asked to find
the values of the parameters that minimize the given quantity. That is, provided a
real-valued multivariable function, the goal is to find the values of the independent
variables that correspond to the minimum, or maximum, of the function (we will
discuss below the possibility of multiple minimums and maximums). Sometimes,
the independent variables are subject to additional conditions, making the problem
even more difficult. Why the function to be minimized depends on the variables
the way it does or why the variables are restricted to some set of values and not
others, has to do with the particular problem we want to solve. Because of the
complexity and diversity of the problems, different methods have been developed to
tackle different sorts of optimization problems.
We start with the simplest case, the optimization of a differentiable real-valued

function on a single variable, something taught in every elementary calculus course.
Remember that the points where the first derivatives vanish are the critical points
and the second derivatives determine whether these points are minimizers, maximiz-
ers or points of inflection. In principle, this is all we need to optimize a differentiable
real-valued function on a single variable. However, for algebraic reasons, in most
cases the solutions are difficult if not impossible to compute exactly. This is the
reason why numerical methods and computer programs are often necessary. Some-
thing similar, but more difficult, happens with multivariable real-valued functions.
The formulation of an optimization problem is relatively simple, the real difficulty
is solving it.
Let us begin by reminding some basic definitions. Given the differentiable function

f : I ⊆ R → R, x 7→ f(x), where I is an open subset of the real line, a critical point
xc of f is a point in I where

∂f(xc)

∂x
= 0 . (3.1)

There are two types of critical points: optimizers , that we denote by x∗, and non-
optimizers. Additionally, an optimizer can be a minimizer , xmin, or a maximizer ,
xmax. These are the points where the function attains a minimum or a maximum,
respectively. To determine whether a critical point is a minimizer or a maximizer,
we use the second derivative test . It states that, if the second derivative at a critical
point is positive, then the critical point is a minimizer,

∂2f(xmin)

∂2x
> 0 , (3.2)

and, if it is negative, then it is a maximizer,

∂2f(xmax)

∂2x
< 0 . (3.3)

Non-optimizers, that is, critical points that are not minimizers or maximizers, are
called inflection points .

10

Exercise 3.1. Show that at an inflection point the graph of a function changes
concavity.

Exercise 3.2. Find the critical points of the functions x2, x3 and x4. Can the
second derivative test be used to determine the nature of their critical points?

Exercise 3.3. Prove the second derivative test using Taylor’s formula,

f(x) =
n−1∑
k=0

1

k!

dkf(a)

dxk
(x− a)k +

1

n!

dnf(x′)

dxn
(x− a)n , (3.4)

where x′ is a point strictly between a and x.

Exercise 3.4. If a function has multiple extrema (an extremum can be a minimum
or a maximum and the plural of extremum is extrema), how do you distinguish
between local and global minimums and maximums?

Much more could be said about the optimization of real-valued functions of a single
variable. For example, we could be interested in a function defined on a closed subset
of the real line, in which case we had to consider the values taken by the function at
the end-points. Note that, the previous theory can be applied to any differentiable
function, however, in many practical situations the function is not differentiable and
other methods have to be used.
These simple mathematical concepts find many uses in the physical sciences. For

example, as we all learned in our first physics course, we can determine the highest
altitude reached by an object thrown upward. We can, as well, find the distance
at which the potential energy of an object attached to a spring is the minimum.
We also learned, however, that one-dimensional problems are not always so easy to
solve. For instance, in many occasions it is impossible to predict the exact position
of an object moving under certain forces. In addition to one-dimensional problems,
two-dimensional optimization problems are also common in elementary physics. For
example, the calculation of the optimal angle a projectile has to be launched in order
to reach the maximum horizontal distance. Another classic optimization problem
of several variables is the construction of a cylindrical package with a fixed volume
and using the least amount of material.

Exercise 3.5. i) Find the highest altitude reached by a particle thrown upward
with velocity v0. ii) What is the stretching distance corresponding to a minimum of
the potential energy of a spring (assuming Hooke’s law)?

Exercise 3.6. State formally all the examples mentioned in the previous paragraph
and solve them.

In the jargon of optimization theory, the problem of finding the highest altitude
reached by an object thrown upward is stated as follows. Given the objective func-
tion,

h(t) = v0t−
1

2
gt2 , (3.5)

where t is a real variable and v0 and g are positive constants, maximize the function
h(t),

max
t

h(t) . (3.6)

11

If it is clear what the independent variable is, in this case t, we simply write

max h(t) . (3.7)

The independent variable is usually called the decision variable and the constants
(v0 and g in our problem) are the parameters . Our goal, then, is to find the time
(or times) t∗ when h(t∗) ≥ h(t) for all t, t∗ ∈ R. Since the objective function h(t) is
such that h(t∗) = h(t) only when t = t∗, the solution is unique. It is easy to show
that the critical point is tc = v0/g and it is a maximizer, tc = tmax = v0/g. The
highest altitude is, h(tmax) = hmax = v20/2g.

Exercise 3.7. Fill in the gaps in the calculations above.

The problem of finding the optimal launch angle is formulated as follows. The
objective function is the horizontal distance x, which is a real-valued function in
two decision variables (time t and the initial angle θ),

max
t,θ

x(t, θ) . (3.8)

From elementary kinematics, we know that this function is given by

x(t, θ) = v0t cos θ , (3.9)

where v0 is a positive constant (the initial speed of the object). The value of x we
are interested in is the horizontal distance at ground level, therefore, we must add
the following equality constraint

v0t sin θ −
1

2
gt2 = t

(
v0 sin θ −

1

2
gt
)
= 0 . (3.10)

If we assume that the projectile is launched at t = 0, then, we must also include
the inequality constraint t > 0. These two conditions can be collected in one single
equality constraint,

h(t, θ) = v0 sin θ −
1

2
gt = 0 . (3.11)

The problem we have to solve is, thus, the max x(t, θ) subject to (3.11). So far
we have not mentioned the condition on the launch angle. For physical reasons we
impose 0 < θ < π/2, a condition which is consistent with (3.11). This is a problem
we know how to solve: we first find t using the constraint (3.11) and substitute it in
(3.9), we then differentiate with respect to θ, equalize to zero, and finally determine
the angle θ that solves the equation. This gives θc = 45◦. The second derivative test
confirms that this is indeed a maximizer, θmax = 45◦.

Exercise 3.8. Compute explicitly all the steps indicated above.

This high-school problem can also be solved using the Lagrange multipliers method.
Here we think of x as a scalar field in the t-θ plane. Denoting by (t, θ)∗ = (t∗, θ∗)
the pair of points in the t-θ plane that maximizes the distance function (3.9) and,
at the same time, satisfies the constraint (3.11), the Lagrange multipliers method
states that

∂θx(t, θ)
∗

∂tx(t, θ)∗
=

∂θh(t, θ)
∗

∂th(t, θ)∗
. (3.12)

12

Fig. 1. Height and level curves of the position scalar field.

Geometrically, the left hand side represents the tangent to the level curve of x(t, θ)
at the optimizer, and the right hand side is the tangent to the constraint curve
h(t, θ) at that same point. Another way of writing the previous relation is,

∂tx(t, θ)
∗

∂th(t, θ)∗
=

∂θx(t, θ)
∗

∂θh(t, θ)∗
= µ∗ . (3.13)

where the constant µ∗ is known as a Lagrange multiplier . We obtain two independent
equations out of this relation,

∂tx(t, θ)
∗ − µ∗ ∂th(t, θ)

∗ = 0 , (3.14)

∂θx(t, θ)
∗ − µ∗ ∂θh(t, θ)

∗ = 0 . (3.15)

These equations plus the equality constraint,

h(t, θ)∗ = 0 , (3.16)

is the system of equations that we now have to solve. Thus, in the current example,
the Lagrange multipliers method replaces the problem of maximizing a function
in two variables, x(t, θ), with one constraint h(t, θ), with the problem of solving a
system of three equations with three unknowns, t∗, θ∗ and µ∗.

Exercise 3.9. Solve the launch angle optimization problem using the Lagrange
multipliers method.

The Lagrange multipliers method can be restated as follows. We first construct
the Lagrangian function,

L(t, θ, µ) = x(t, θ)− µh(t, θ) , (3.17)

and then declare that the maximization problem is equivalent to solving the following
system of equations,

∂tL(t, θ, µ)
∗ = 0 , ∂θL(t, θ, µ)

∗ = 0 , ∂µL(t, θ, µ)
∗ = 0 , (3.18)

where (t, θ, µ)∗ = (t∗, θ∗, µ∗). Or, in more compact notation,

∇t,θL(t, θ, µ)
∗ = 0 , ∂µL(t, θ, µ)

∗ = 0 . (3.19)

13

Using (3.17), we then get that

∇t,θx(t, θ)
∗ − µ∗∇t,θh(t, θ)

∗ = 0 , (3.20)

that is,
∇t,θx(t, θ)

∗ = µ∗∇t,θh(t, θ)
∗ . (3.21)

The geometric interpretation of this relation is that, at the optimizer, the gradient
of the level curve of the objective function is proportional to the gradient of the
constraint function.

Exercise 3.10. Draw the corresponding vectors in Figure 1.

The cylindrical package problem can be formulated in a similar way. The area of
the package is now the objective function,

A(r, h) = 2πr2 + 2πrh , (3.22)

and the goal is to minimize it,
minA(r, h) , (3.23)

subject to the condition that the volume contained within the package is constant,
that is, r and h are such that

V (r, h) = πr2h = V0 . (3.24)

This is the only constraint of the problem (in addition to the fact that distances,
areas and volumes are positive quantities). You can easily show that the cylinder
we are looking for has rmin = hmin/2 = 3

√
V0/2π. First, use the equality constraint

to express the area in terms of a single variable, then differentiate with respect
to this variable and equalize to zero, finally solve for the variable and use again
the constraint to find the solution. The second derivative test gives that it is a
minimizer.

Exercise 3.11. Solve the problem by first considering A(r) and then A(h). In both
cases, of course, you should get the same answer.

The Lagrange multipliers method starts with the Lagrangian function,

L(r, h, µ) = A(r, h)− µ
[
V (r, h)− V0

]
= 2πr2 + 2πrh− µ(πr2h− V0) , (3.25)

and states that the solution is given by the system of equations

∇r,hL(r, h, µ)
∗ = 0 , ∂µL(r, h, µ)

∗ = 0 . (3.26)

Exercise 3.12. Solve the cylindrical package optimization problem using the La-
grange multipliers method. Plot the level curves of the objective function and indi-
cate the point where the constraint function is satisfied. Draw the gradients at the
minimum point.

In addition to the volume constraint on the volume, we also mentioned that r, h >
0. However, we could have imposed a different set of inequality constraints,

ra ≤ r ≤ rb , hc ≤ h ≤ hd . (3.27)

14

Exercise 3.13. What is the interpretation of this in the context of Exercise 3.12?

Now, suppose we want to minimize the same area function (3.22), but instead of
the equality constraint on the volume, we have an inequality constraint,

V (r, h) ≤ V0 . (3.28)

The solution to this problem is different from the one given above. Again, we start
with a Lagrangian function,

L(r, h, λ) = A(r, h)− λ
[
V (r, h)− V0

]
. (3.29)

Note that the Lagrange multiplier is now denoted by λ. The Lagrange multipli-
ers method affirms that the solution to the minimization problem is given by the
following system of equations,

∂rL(r, h, λ)
∗ = 0 , ∂hL(r, h, λ)

∗ = 0 , ∂λL(r, h, λ)
∗ ≤ 0 . (3.30)

The last relation implies that

∂λL(r, h, λ)
∗ = V (r, h)∗ − V0 ≤ 0 . (3.31)

The method states that, in addition to these equations, we must add the following
conditions on the optimum value of the Lagrange multiplier,

λ∗ ≥ 0 , (3.32)

and
λ∗[V (r, h)∗ − V0

]
= 0 . (3.33)

To illustrate how the method works, suppose that we are only interested in the
minimization of the side area of the cylindrical package, a(r, h) = 2πrh. That is,

min a(r, h) = min 2πrh , (3.34)

The constraint on the decision variables is the following,

g(r, h) = r2 + h2 ≤ R2 . (3.35)

Exercise 3.14. Draw a picture explaining the problem.

According to (3.29), the Lagrangian of the problem is

L(r, h, λ) = 2πrh− λ(r2 + h2 −R2) . (3.36)

The system of equations to be solved is then,

2πh∗ − 2λ∗r∗ = 0 , 2πr∗ − 2λ∗h∗ = 0 , r∗2 + h∗2 −R2 ≤ 0 , (3.37)

with
λ∗ ≥ 0 , λ∗(r∗2 + h∗2 −R2) = 0 . (3.38)

From the first two equations we get,

λ∗ =
πh∗

r∗
, λ∗ =

πr∗

h∗ . (3.39)

15

This gives, r∗2 = h∗2. If we discard the solution λ∗ = 0, because that would imply
r∗ = h∗ = 0, the third equation in (3.37) gives r∗2 = h∗2 = R2/2. Given that the
Lagrange multiplier must be positive, there are two possible mathematical solutions
to the problem,

r∗ = ±
√

R2

2
, h∗ = ±

√
R2

2
, λ∗ = π . (3.40)

Finally, since distances are positive, the correct physical solution is,

r∗ =
R√
2
, h∗ =

R√
2
, λ∗ = π . (3.41)

3.1 Continuous Optimization

A continuous optimization problem is an optimization problem with objective func-
tion defined on a continuous set. For example, all the problems discussed above are
continuous because the decision variables were assumed to be continuous (distances,
angles, etc). Furthermore, it is convenient to classify continuous problems into un-
constrained and constrained problems. In particular, because of their accessibility,
we will introduce linear and quadratic problems.
Since here I assume that you have already taken a formal calculus course, below

you will not find rigorous definitions and proofs. For a detailed presentation, I
recommend you consult the appropriate literature.

3.1.1 Unconstrained Problems

An unconstrained (continuous) optimization problem is an optimization problem
where the only conditions on the decision variables are those imposed by the (con-
tinuous) objective function itself. For example, given a differentiable real-valued
function f on an open subset U ⊆ Rn,

f : U ⊆ Rn → R , (x1, . . . , xn) 7→ f(x1, . . . , xn) , (3.42)

an unconstrained (continuous) minimization problem,

min
(x1, ..., xn)

f(x1, . . . , xn) , (3.43)

consists in finding the point (x1, . . . , xn)
∗ ∈ U , for which

f(x1, . . . , xn)
∗ < f(x1, . . . , xn) , (3.44)

for all (x1, . . . , xn) ∈ U − {(x1, . . . , xn)
∗}. A similar definition applies for a maxi-

mization problem.
For objective functions depending on a small number of decision variables, standard

calculus techniques are taught in elementary courses. We begin with the simplest
multivariable example: a real-valued function in two real variables,

f : U ⊆ R2 → R , (x, y) 7→ f(x, y) . (3.45)

A critical point of f is a point (x, y)c ∈ U that satisfies,

∂f(x, y)c
∂x

= 0 ,
∂f(x, y)c

∂y
= 0 . (3.46)

16

Of course, there are functions with multiple critical points. A critical point can be
a minimizer, a maximizer or a saddle point (the equivalent of an inflection point for
functions of a single variable). Minimizers and maximizers are both optimizers .

Exercise 3.15. Write down everything you remember about minimizers, maximiz-
ers and saddle points.

To determine whether a critical point of the function f is a minimizer, a maximizer
or a saddle point, we introduce the so called Hessian matrix ,

Hf(x, y) =


∂2f(x, y)

∂x2

∂2f(x, y)

∂x∂y

∂2f(x, y)

∂y∂x

∂2f(x, y)

∂y2

 . (3.47)

Note that the Hessian matrix is symmetric if we assume that partial derivatives in
U commute. The determinant of the Hessian matrix is known as the Hessian,

det
(
Hf(x, y)

)
=

∂2f(x, y)

∂x2

∂2f(x, y)

∂y2
−
(
∂2f(x, y)

∂x∂y

)2

. (3.48)

The nature of a critical point is decided by the second derivative test . According to
it, a minimizer (x, y)min satisfies,

∂2f(x, y)min

∂x2
> 0 , (3.49)

and
det

(
Hf(x, y)min

)
> 0 . (3.50)

For a maximizer (x, y)max, on the other hand,

∂2f(x, y)max

∂x2
< 0 , (3.51)

and
det

(
Hf(x, y)max

)
> 0 . (3.52)

A critical point which is not a minimizer or a maximizer is a saddle point .

Exercise 3.16. Use Taylor’s formula for functions of several variables,

f(x) = f(a) +∇f(a) · (x− a) +
1

2
(x− a) ·Hf(x′)(x− a) + . . . , (3.53)

where x′ is a point strictly between a and x, that is, x′ = a+ t(x−a) for 0 < t < 1,
to verify by yourself that the above is the correct criterion to classify critical points.

Exercise 3.17. Find and classify all the critical points of the function

f(x, y) =
1

2
axxx

2 +
1

2
ayyy

2 + axyxy − axx− ayy . (3.54)

Exercise 3.18. Provide some examples of real-valued functions f(x, y) for which
the critical points are difficult to find. What about the classification of these points?

17

The next simplest example is a differentiable real-valued function in three variables,

f : U ⊆ R3 → R , (x, y, z) 7→ f(x, y, z) . (3.55)

A critical point (x, y, z)c satisfies

∂f(x, y, z)c
∂x

= 0 ,
∂f(x, y, z)c

∂y
= 0 ,

∂f(x, y, z)c
∂z

= 0 . (3.56)

The Hessian matrix in this case is,

Hf(x, y, z) =



∂2f(x, y, z)

∂x2

∂2f(x, y, z)

∂x∂y

∂2f(x, y, z)

∂x∂z

∂2f(x, y, z)

∂y∂x

∂2f(x, y, z)

∂y2
∂2f(x, y, z)

∂y∂z

∂2f(x, y, z)

∂z∂x

∂2f(x, y, z)

∂z∂y

∂2f(x, y, z)

∂z2


. (3.57)

It is symmetric if we assume that the partial derivatives commute. The second
derivative test is similar to that stated above for functions of two variables. Consider
the following determinants at a critical point,

∆1(x, y, z)c = det

(
∂2f(x, y, z)c

∂x2

)
, (3.58)

∆2(x, y, z)c = det


∂2f(x, y, z)c

∂x2

∂2f(x, y, z)c
∂x∂y

∂2f(x, y, z)c
∂y∂x

∂2f(x, y, z)c
∂y2

 , (3.59)

∆3(x, y, z)c = det
(
Hf(x, y, z)c

)
. (3.60)

The second derivative test affirms that at a minimizer (x, y, z)min,

∆1(x, y, z)min > 0 , ∆2(x, y, z)min > 0 , ∆3(x, y, z)min > 0 . (3.61)

In contrast, at a maximizer (x, y, z)max,

∆1(x, y, z)max < 0 , ∆2(x, y, z)max > 0 , ∆3(x, y, z)max < 0 . (3.62)

Points that are not optimizers, that is, minimizers or maximizers, are saddle points .

Exercise 3.19. How would you find and classify the critical points of the following
function?

f(x, y, z) =
1

2
axxx

2 +
1

2
ayyy

2 +
1

2
azzz

2 + axyxy+ axzxz+ ayzyz− axx− ayy− azz .

(3.63)

We are now in position to generalize our previous discussion to real-valued function
in n variables. For convenience, let us write x = (x1, . . . , xn). Thus, given a function

f : U ⊆ Rn → R , x 7→ f(x) , (3.64)

18

the goal is to optimize it. Depending on the problem, we may be interested in finding
the minimizers, min f(x), or the maximizers, max f(x). Critical points , among them
the optimizers (including minimizers and maximizers), are solutions of the following
system of equations,

∂f(xc)

∂x1

= 0 ,
∂f(xc)

∂x2

= 0 , . . .
∂f(xc)

∂xn

= 0 . (3.65)

We can write this system of equations in a more compact form as

∇f(xc) = 0 , (3.66)

where

∇f(xc) =

(
∂f(xc)

∂x1

,
∂f(xc)

∂x2

, . . . ,
∂f(xc)

∂xn

)
. (3.67)

Now, to determine the nature of a critical point, that is, to find out whether it is a
minimizer, a maximizer, or none of the two, we construct the n×n Hessian matrix ,

Hf(x) =



∂2f(x)

∂x2
1

· · · ∂2f(x)

∂x1∂xn

...
. . .

...

∂2f(x)

∂xn∂x1

. . .
∂2f(x)

∂x2
n

 . (3.68)

We use the Hessian matrix to compute the determinants ∆1(xc), ∆2(xc), . . . ∆n(xc)
as in the previous examples (note that these are the determinants of the submatrices
starting from the upper left corner of the Hessian matrix). The second derivative test
states that at a minimizer all the determinants are positive, ∆i(xmin) > 0 for every
i = 1, . . . , n, whereas at a maximizer the determinants alternate sign, ∆1(xmax) < 0,
∆2(xmax) > 0, ∆3(xmax) < 0, and so on. If a point is not an optimizer, then it is a
saddle point .

Exercise 3.20. Find and classify the critical point of the following function of n
variables,

f(x1, . . . , xn) =
1

2

n∑
i=1

aiix
2
i +

n−1∑
i=1<j

aijxixj −
n∑

i=1

aixi . (3.69)

As we have seen, the statement and steps required to solve an unconstrained
continuous optimization problems are, theoretically speaking, rather simple. The
real difficulty is to find exact solutions. Because of this, experts usually content
themselves with approximate solutions. The most accurate and useful approximate
numerical methods they have developed have been adapted to run in modern digital
computers. For completeness, let us discuss briefly two of these methods. The first
of which was invented long time ago by Newton himself.
The Newton method is an iterative process that helps us find approximate values

of the critical points of differentiable real-valued functions f : U ⊆ Rn → R, where
n is any positive integer. In other words, the Newton method provides approximate
solutions to the system of equations ∇f(x) = 0. To simplify the presentation, we
will write ∇f = g. So, the critical points of f will correspond to the roots of g.

19

Because the multivariable case is a straightforward generalization of the Newton
method for real-valued functions of a single variable, we first present this easier case.
For simplicity, assume that the function g : I ⊆ R → R, x 7→ g(x), has only one root
x∗, that is, g(x∗) = 0. The method starts by choosing two arbitrary points x0 and
x1 in the neighborhood of the expected value of x∗, and considering the following
approximation

g′(x0) =
f(x1)− f(x0)

x1 − x0

. (3.70)

If instead of the actual value of f(x1), we take f(x1) = 0, we get

g′(x0) = − f(x0)

x1 − x0

, (3.71)

and from here (if g′(x0) ̸= 0),

x1 = x0 −
f(x0)

g′(x0)
. (3.72)

Exercise 3.21. Draw a picture explaining what we just did.

We now pick another point x2 and repeat the process, giving

x2 = x1 −
f(x1)

g′(x1)
=

(
x0 −

f(x0)

g′(x0)

)
−

f
(
x0 − f(x0)/g

′(x0)
)

g′
(
x0 − f(x0)/g′(x0)

) . (3.73)

Exercise 3.22. Draw this step.

After k reiterations, we arrive at the point

xk = xk−1 −
f(xk−1)

g′(xk−1)
=

(
xk−2 −

f(xk−2)

g′(xk−2)

)
−

f
(
xk−2 − f(xk−2)/g

′(xk−2)
)

g′
(
xk−2 − f(xk−2)/g′(xk−2)

) . (3.74)

Since every point xk (k = 1, 2, . . .) has an explicit expression in terms of the prece-
dent point xk−1, any point xk will ultimately be given by the initial point x0. The
Newton method affirms that the more iterations we perform, the better the approxi-
mation value we obtain for x∗. If, as we assumed, g(x) = f ′(x), the Newton method
can thus be used to find an approximate value of the critical points of f .

Exercise 3.23. Sketched the Newton method described above.

For a multivariable function g : U ⊆ Rn → Rn, the procedure is similar. We start
by choosing two points x0 and x1 in Rn, and applying the total derivative,

Dg(x0)(x1 − x0) = g(x1)− g(x0) . (3.75)

We then consider g(x1) = 0,

Dg(x0)(x1 − x0) = −g(x0) . (3.76)

If the total derivative is invertible at x0, then

x1 = x0 −
(
Dg(x0)

)−1(
g(x0)

)
. (3.77)

20

Exercise 3.24. Try to visualize what is happening here from the geometrical point
of view.

In general, after k iterations,

Dg(xk−1)(xk − xk−1) = −g(xk−1) , (3.78)

and thus (if the total derivative is invertible at every point xk−1)

xk = xk−1 −
(
Dg(xk−1)

)−1(
g(xk−1)

)
. (3.79)

As for the single variable case, the more iterations, the better the approximate
value we obtain for the root x∗ of the function g. Since we are interested specifically
in the case g = ∇f , we conclude that the critical points of f are approximated by

xk = xk−1 −
(
D∇f(xk−1)

)−1(∇f(xk−1)
)
. (3.80)

There is an additional consideration we have to make which was not necessary in
the single variable case. In index notation, the relation g(x) = ∇f(x) takes the
form

gj(x) =
∂f(x)

∂xj

. (3.81)

The total derivative Dg(x), on the other hand, is just the Jacobian matrix of g(x),

Dg(x) =

[
∂gj(x)

∂xi

]
. (3.82)

Using both relations, we get that

Dg(x) = D∇f(x) =

[
∂

∂xi

∂f(x)

∂xj

]
=

[
∂2f(x)

∂xi∂xj

]
. (3.83)

This expression is nothing else than the n×n Hessian matrix (3.68) written in index
notation,

D∇f(x) = Hf(x) . (3.84)

The critical point of f is, therefore, approximately given by

xk = xk−1 −
(
Hf(xk−1)

)−1(∇f(xk−1)
)
. (3.85)

Note that the Hessian matrix must be invertible.
The second approach we want to mention is the steepest (or gradient) descent

method . This too is an iterative process. We start by choosing a point x0, ideally
near the expected minimizer we are looking for, and move a distance h, called the
step size, in the direction opposite to the gradient,

x1 = x0 − h∇f(x0) . (3.86)

For the sake of clarity, let us assume for now that the step size h is the same for
every iteration of the process. We now use the value x1 we just found to determine
the next best approximation,

x2 = x1 − h∇f(x1) =
(
x0 − h∇f(x0)

)
− h∇f

(
x0 − h∇f(x0)

)
. (3.87)

21

After k iterations, the minimizer is approximated by

xk = xk−1−h∇f(xk−1) =
(
xk−2−h∇f(xk−2)

)
−h∇f

(
xk−2−h∇f(xk−2)

)
. (3.88)

Since every point xk has an explicit expression in terms of the precedent xk−1, any
point xk will ultimately be given by the initial choice x0. The iterative process stops
when the convergence criteria are met.

Exercise 3.25. Beginning with an arbitrary point x0 = (x0, y0), write down explic-
itly the first two steps of the steepest descent method for the function

f(x, y) =
1

2
axxx

2 +
1

2
ayyy

2 + axyxy . (3.89)

For simplicity, above we have assumed that the step size is the same for every iter-
ation, however, it is not difficult to convince yourself that this can lead to incorrect
results.

Exercise 3.26. Explain visually why this is so?

To remedy this, we can choose a different step size for every iteration. The correct
step size is determined as follows. Suppose we define the following function of the
step size,

sk(hk) = f
(
xk−1 − hk∇f(xk−1)

)
, (3.90)

for k = 1, 2,

Exercise 3.27. What does this represent? Explain it visually.

The optimal value of hk is the one that satisfies

0 =
dsk(hk)

dhk

=
d

dhk

f
(
xk−1 − hk∇f(xk−1)

)
= ∇f

(
xk−1 − hk∇f(xk−1)

) d

dhk

(
xk−1 − hk∇f(xk−1)

)
= ∇f

(
xk−1 − hk∇f(xk−1)

) (
−∇f(xk−1)

)
. (3.91)

Thus, the optimal step size is given by

∇f
(
xk−1 − hk∇f(xk−1)

)
∇f(xk−1) = 0 . (3.92)

Exercise 3.28. Repeat Exercise 3.25 but this time assume that the step sizes are
obtained by using the formula (3.92).

3.1.2 Constrained Problems

In contrast to an unconstrained optimization problem, where the set of solutions
is completely determined by the domain of the objective function, for constrained
continuous optimization problems the solution belongs to a smaller set given by the
inclusion of additional conditions on the independent variables. The extra conditions
are the the so called constraints .

22

In general, given the objective function f : U ⊆ Rn → R, x 7→ f(x), a constrained
continuous optimization problem, denoted

min
x

f(x) or max
x

f(x) , (3.93)

(depending whether we want to find the minimizers or the maximizers), can include
m equality constraints,

hi : Ui ⊆ Rn → R , x 7→ hi(x) = bi , (3.94)

with i = 1, 2, . . . ,m, and r inequality constraints,

gj : Uj ⊆ Rn → R , x 7→ gj(x) ≤ dj , (3.95)

with j = 1, 2, . . . , r. The constraints can also be written in vector notation as
follows,

h : U ⊆ Rn → Rm , x 7→ h(x) = b ,

g : U ⊆ Rn → Rr , x 7→ g(x) ≤ d . (3.96)

In a more compact notation, then, a constrained optimization problem is a mini-
mization or maximization problem,

min
x

f(x) or max
x

f(x) , (3.97)

subject to equality and inequality constraints,

h(x) = b , g(x) ≤ d . (3.98)

Exercise 3.29. It should be obvious for you that minimization and maximization
problems are related by

max
x

f(x) = min
x

(−f(x)) ,

min
x

f(x) = max
x

(−f(x)) . (3.99)

Exercise 3.30. How is the classical mechanics’ distinction between holonomic and
non-holonomic constraints related to our present discussion? Provide at least one
mechanical example of each type of constraint.

As we saw above, unconstrained optimization problems are generally difficult to
solve. In fact, as soon as the objective function has two or three variables, the
solution to the problem can be very difficult to find. Thus, it should not come
as a surprise to you to know that, due to the extra restrictions on the decision
variables, constrained problems can be even more challenging. Certainly, as the
examples discussed in the introduction to this section show, there are constrained
problems that are easy to solve. However, these types of problems are an exception.
In general, constrained problems are difficult to solve and computer programs are
needed. Instead of presenting the most general scenario (something that would
take us too far afield from the purpose of these notes), let us simply show how the

23

Lagrange multipliers method discussed above is generalized to an arbitrary number
of decision variables.
Suppose we want to minimize a differentiable function f : U ⊆ Rn → R, subject to

a single equality constraint h(x) = 0. As we already saw (see for example (3.21)),
the Lagrange multipliers method establishes that at a minimum x∗,

∇xf(x
∗) = µ∗∇xh(x

∗) . (3.100)

The real constant µ∗ is the corresponding Lagrange multiplier at the minimum. Note
that, for the method to work, we must have ∇xh(x

∗) ̸= 0.
If we have several equality constraints, let us say hi, with i = 1, 2, . . . ,m, the

generalization is straightforward. We introduce m Lagrange multipliers, one for
each constraint, and require that

∇xf(x
∗) =

m∑
i=1

µ∗
i ∇xhi(x

∗) = µ∗ · ∇xh(x
∗) , (3.101)

where µ∗ = [µ∗
1 · · ·µ∗

m]T is the Lagrange multipliers vector . Beware that we have
introduced the (unconventional) notation

∇xh(x
∗) =

m∑
i=1

∇xhi(x
∗) êi , (3.102)

where (êi) is the same ordered basis used to express µ∗,

µ∗ = [µ∗
1 · · ·µ∗

m]T =
m∑
i=1

µ∗
i êi . (3.103)

The system of equations (3.101) can conveniently be obtained from a Lagrangian
function,

L(x,µ) = f(x)− µh(x) , (3.104)

and requiring that

∇xL(x
∗,µ∗) = 0 , ∇µL(x

∗,µ∗) = 0 . (3.105)

Since each equality constraint comes with a Lagrange multiplier, this is a system of
n+m equations with n+m unknowns.

Exercise 3.31. What if the constraint is h(x) = d instead of h(x) = 0?

Exercise 3.32. Find the minimizers of

f1(x, y) = x+ y , f2(x, y) = x2 + y2 , f3(x, y) = xy , (3.106)

subject to each one of the following constraints,

h1(x, y) = x+ y = 1 , h2(x, y) =
x2

a2
+

y2

b2
= 1 . (3.107)

First, minimize the function by straightforward substitution. Then, compare this
result with the one obtained by minimizing using the Lagrange multipliers method.
Interpret your results geometrically.

24

Exercise 3.33. Repeat the previous exercise for

f1(x, y, z) = x+ y + z , f2(x, y, z) = x2 + y2 + z2 , f3(x, y, z) = xyz , (3.108)

subject to

h1(x, y, z) = x+ y + z = 1 , h2(x, y, z) =
x2

a2
+

y2

b2
+

z2

c2
= 1 . (3.109)

Let us now explain how to solve continuous optimization problems with inequality
constraints. Suppose we want to minimize a function f : U ⊆ Rn → R, subject to a
set of r inequality constraints. We compactly write the constraints in vector notation
as g(x) ≤ d. To solve the minimization problem, we construct the Lagrangian
function

L(x,λ) = f(x)− λ ·
[
g(x)− d

]
, (3.110)

where λ = [λ1 · · ·λr]
T , and impose,

∇xL(x
∗,λ∗) = 0 , ∇λL(x

∗,λ∗) ≤ 0 , (3.111)

with
λ∗ ≥ 0 , λ∗ ·

[
g(x∗)− d

]
= 0 . (3.112)

Exercise 3.34. Explain what has to be done to find the minimizers of

f(x, y) = axx+ ayy , (3.113)

subject to the inequality constraints

g(x, y) = bxx+ byy ≤ 0 . (3.114)

Exercise 3.35. Repeat the previous exercise for

f(x, y) =
1

2
axxx

2 +
1

2
ayyy

2 + axyxy − axx− ayy , (3.115)

subject to

g1(x, y) =
1

2
bxxx

2 +
1

2
byyy

2 + bxyxy − bxx− byy ≤ 0 , (3.116)

g2(x, y) =
1

2
cxxx

2 +
1

2
cyyy

2 + cxyxy − cxx− cyy ≤ 0 . (3.117)

Choose some values of the constants so that you can explicitly solve the problem.

The generalization to minimization problems with equality as well as inequality
constraints, min f(x) subject to h(x) = b and g(x) ≤ d, is straightforward. We
define a Lagrangian function

L(x,λ,µ) = f(x)− µ ·
[
h(x)− b

]
− λ ·

[
g(x)− d

]
. (3.118)

The solution of the minimization problem uses a combination of the two methods
discussed above. Because of the equality constraints we require that,

∇xL(x
∗,λ∗,µ∗) = 0 , ∇µL(x

∗,λ∗,µ∗) = 0 . (3.119)

25

On the other hand, the inequality constraints impose that,

∇xL(x
∗,λ∗,µ∗) = 0 , ∇λL(x

∗,λ∗,µ∗) ≤ 0 , (3.120)

with
λ∗ ≥ 0 , λ∗ ·

[
g(x∗)− d

]
= 0 . (3.121)

If unconstrained optimization problems are generally difficult to solve, just imagine
how hard are problems with mixed constraints. This is the reason why iterative
processes such as the Newton method and the steepest descent method, and their
advanced versions, are used to approximate the solutions. You can look at the
literature if you are interested in these sorts of problems. In the remaining of this
subsection, we will discuss some important special cases. Let us start with the classic
diet problem.
Suppose that there are P food products available in the market, individually de-

noted by 1, 2, . . . , p, . . . , P , and we know their prices, c1, c2, . . . cp, . . . , cP . If every
day we buy a quantity xp of product p, the total daily cost will then be,

C(x1, x2, . . . , xP) = c1x1 + c2x2 + . . .+ cPxP =
P∑

p=1

cpxp . (3.122)

Let us say we are interested in keeping track of the consumption of N nutrients and
we know that product p contains a quantity nip of nutrient i. The daily consumption
of nutrient i is then,

Di = ni1x1 + ni2x2 + . . .+ niPxP . (3.123)

A similar relation holds for all the other nutrients, i = 1, 2, . . . , N . Now, suppose
nutritionists recommend that every person should consume at least a quantity Ri of
nutrient i. This requirement imposes that,

Di = ni1x1 + ni2x2 + . . .+ niPxP ≥ Ri , (3.124)

for every i = 1, 2, . . . , N . The diet problem aims at finding the minimum daily
expenses given the recommendations of the nutritionists. In other words, the idea is
to find the right combination and amount of each food product so that the nutrient
requirements are satisfied with the least possible cost. In mathematical language,

min
(x1,...,xP)

P∑
p=1

cpxp , (3.125)

subject to

n11x1 + n12x2 + . . .+ n1PxP ≥ R1 ,

...
...

...

nN1x1 + nN2x2 + . . .+ nNPxP ≥ RN . (3.126)

This optimization problem can be written more compactly in terms of vectors and
matrices. For example, we can collect all the prices cp and quantities xp in appro-
priate column vectors [cp] = c and [xp] = x, so that

min
(x1,...,xP)

P∑
p=1

cpxp = min
x

cTx . (3.127)

26

Similarly, we can group all the coefficients nip in an N ×P matrix N = [nip], so that
the nutrient requirements can be simply written as

Nx ≥ R . (3.128)

Exercise 3.36. Some nutrients not only have a minimum required quantity, but also
a suggested maximum consumption quantity. How would you formulate a problem
with these sorts of constraints?

Exercise 3.37. Suppose some nutrients have to be consumed in an exact quantity,
how would you reformulate the diet problem?

The diet problem is an example of a linear optimization problem or linear program,
for short. They are the object of study of a subfield of optimization theory known
as linear programming. A linear program is an optimization problem with a linear
objective function,

min
x

aTx or max
x

aTx , (3.129)

subject to linear constraints ,

Hx = b , Gx ≤ d . (3.130)

Note that, if there are m equality constraints, then b is an m × 1 column vector
and, assuming there are n unknowns, H is an m× n matrix. Similarly, if there are
r inequality constraints, then d is an r × 1 column vector and G is a r × n matrix.
Be cautious that there are several equivalent ways of defining a linear program.

For instance, the inequality constraint is sometimes written Gx ≥ d. These two
definitions are certainly equivalent because we can simply multiply both sides of
the inequality constraint by −1 and define the matrix G′ = −G and the constant
vector d′ = −d, giving G′x ≤ d′. It is said that a linear minimization problem is in
standard form if it is written as follows,

min
x

aTx , subject to Hx = b , x ≥ 0 . (3.131)

Here, the non-negativity condition on the decision variables is explicitly indicated.

Exercise 3.38. Show that any linear program can be written in standard form.

Exercise 3.39. State mathematically two real-life linear programs.

Optimization problems that are not linear, either because the objective function or
the constraints are not linear, are called nonlinear optimization problems. They are
the object of study of nonlinear programming and, in general, they are extremely
difficult to solve (even with computer programs). Among these, we are particularly
interested in optimization problems with quadratic objective functions ,

f(x1, . . . , xn) =
1

2

n∑
i,j=1

aijxixj +
n∑

i=1

aixi , (3.132)

where all the coefficients are constant and aij = aji. We can use column vectors and
matrices to write them in a more compact form. We first rewrite

f(x1, . . . , xn) =
1

2

n∑
i,j=1

xiaijxj +
n∑

i=1

aixi . (3.133)

27

We then define the symmetric matrix

A =


a11 . . . a1n
...

. . .
...

an1 . . . ann

 . (3.134)

Using the column vectors [xi] = x, [ai] = a and the matrix A = [aij], the quadratic
function above takes the following form,

f(x) =
1

2
xT Ax+ aTx . (3.135)

Quadratic optimization problems, also known as quadratic programs , are optimiza-
tion problems with quadratic objective functions and linear constraints. For exam-
ple, a quadratic minimization problem,

min
x

1

2
xTAx+ aTx , (3.136)

is subject to linear constraints,

Hx = b , Gx ≤ d . (3.137)

Exercise 3.40. Use column vectors and matrices to write all the objective functions
and constraints in Exercises 3.32 to 3.35. Classify the programs as linear, quadratic
or none of the two.

3.2 Dual Optimization Problems

So far we have avoided discussing functions with multiple extreme points. However,
we know that most functions have several, if not infinite optimizers. For example,
the potential V = cx2(x2−x2

0) has more than one optimizer. These sorts of problems
are very common in physics, however, they are generally difficult to solve. That is
why we are particularly interested in problems with a single optimizer. Convex
optimization deals with problems with convex objective functions, that have this
property.

Exercise 3.41. Find the optimizers of the function V = cx2(x2 − x2
0). Draw it and

explain under which conditions could the Newton method fail to solve it.

There have been many progresses in the theory of convex optimization. Most
notably, the fact that convex optimization are solvable in polynomial time. This,
among many other suitable properties, has replacement of the obsolete division be-
tween linear and nonlinear problems with the convex vs nonconvex optimization
problems. For example, linear and quadratic functions are convex, so their corre-
sponding problems fall under the umbrella of convex optimization. After some basic
definitions of duality theory, we will move to duality.
Let M be a metric space, that is, a set of points with a metric (distance) function,

and X be an open subset of M . We say that X is a convex set of M if given any
two points x, y ∈ X, the points

z = x+ t(y − x) = ty + (t− 1)x , (3.138)

for all values of the parameter t ∈ [0, 1], are in X.

28

Exercise 3.42. Draw two and three-dimensional examples of convex and non- con-
vex sets.

Consider, for example, the two-dimensional case, which is easy to visualize. Let
U ⊆ R2 and x and y two points in U . The subset U of R2 is convex if the points

z = ty + (t− 1)x , (3.139)

for t ∈ [0, 1], are in U . Now, let f : I ⊆ R → R, x 7→ f(x) = y. The area above the
graph of f is called the epigraph of f ,

epi f = {(x, Y) ∈ I × R | Y ≥ y} . (3.140)

When the epigraph is a convex set, we say that f is a convex function. In higher
dimensions, the definitions are similar. The function f : U ⊆ Rn → R, x 7→ f(x), is
a convex function if the epigraph of f is a convex set of Rn+1.

Exercise 3.43. Provide all the details of the above definitions.

Exercise 3.44. Show that linear and quadratic functions are convex.

A convex optimization problem, or convex program, consists in the optimization of
a convex function f : U ⊆ Rn → R, x 7→ f(x),

min
x

f(x) or max
x

f(x) , (3.141)

subject to linear equality constraints,

Hx = b , (3.142)

and convex inequality constraints,

g(x) ≤ d . (3.143)

Note that, while the equality constraints must be linear functions, the inequality
constraints are convex functions (they can also, of course, be linear).
As we said, convex programming is a vast field and we will not discuss it further

here. In addition to the fact that they have only one minimizer and they are solvable
in polynomial time, we are interested in one additional feature of convex problems:
the so called (Lagrange) duality . This property allows us to reformulate a convex
problem, the primal program, as another which is easier to solve, the dual program.
The general proof of this theorem is beyond the purpose of these notes. The idea,
though, is simple: solve a minimization problem in the decision variable x by solving
the maximization problem in the dual variable µ and λ (the Lagrange multipliers).
Let us see a couple of examples to illustrate how the method works.
Suppose we want to solve the linear program,

max
x

aTx , subject to Hx = b and x ≥ 0 . (3.144)

The Lagrange multipliers method tells us to construct the Lagrangian function,

L(x,µ) = aTx+ µT (Hx− b) , (3.145)

29

and the solutions will be given by the system of equations

∇xL(x
∗,µ∗) = 0 , ∇µL(x

∗,µ∗) = 0 . (3.146)

We thus extend the space of independent variables from n to n+m (assuming that
they are m equality constraints) and solve the problem as if it was an unconstrained
problem. But, suppose we rewrite the Lagrangian function as follows

L(x,µ) = −µTb+ (aT + µTH)x

= −bTµ+ xT (a+HTµ)

= −
(
bTµ− xT (HTµ− a)

)
. (3.147)

Rewritten in this form, the prescription (3.146) gives the solution to the problem

min
µ

bTµ , subject to HTµ ≥ a . (3.148)

This is the dual program of (3.144).

Exercise 3.45. Show that the linear program,

max
x

aTx , subject to Gx ≤ d and x ≥ 0 , (3.149)

has as dual program

min
λ

dTλ , subject to GTλ = a and λ ≥ 0 . (3.150)

3.3 Integer Programs

Until now, we have only discussed optimization problems with continuous decision
variables. However, many real-life optimization problems involve discontinuous vari-
ables. For example, in the case of the diet problem, there are food products that are
not sold in fractional parts; you can only buy them in an integer multiple of a fixed
quantity. Optimization problems with nothing but integer variables are called inte-
ger optimization problems or integer programs . Some of them include constraints,
the so called constrained integer programs , and some do not, the unconstrained in-
teger programs .
The applications of linear programs to science and engineering are countless. The

standard example is the so called knapsack problem. Suppose you have a knapsack
with a limiting weight capacity Wmax and a set of N items you want to take with
you. The goal is to maximize the total value of the content of the knapsack,

max
(n1,...,nN)

c1n1 + . . .+ cini + . . .+ cNnN = max
n

cTn , (3.151)

where ci is the cost of the ith item and its quantity ni ∈ Z≥0. The weight of the
stuff you put in the knapsack is

W = w1n1 + . . .+ wNnN = wTn . (3.152)

Since the total weight cannot exceed Wmax, we have to impose the constraint

wTn ≤ Wmax . (3.153)

30

Thus, the knapsack problem consists in

max
n

cTn , subject to wTn ≤ Wmax and n ∈ (Z≥0)N . (3.154)

A general linear integer program consists in

min
z

aTz or max
z

aTz , (3.155)

subject to
Hz = b , Gz ≤ d and z ∈ (Z≥0)N . (3.156)

Exercise 3.46. Think about some real-life integer linear programs.

Consider again the diet problem, but this time assume that some of the items are
sold exclusively in integer numbers. In this case, the problem involves continuous
as well as integer variables. We denote by c, with c = 1, . . . , C, a product that can
be bought in continuous quantities and by i, with i = 1, . . . , I, a product that can
be bought only in integer numbers. Their respective prices are denoted by cc and
ci. The objective function is then

C(x,y) = (c1x1 + . . .+ ccxc + . . .+ cCxC) + (c1z1 + . . .+ cizi + . . .+ cIzI)

= cTC x+ cTI z . (3.157)

Here we are using the column vector notation x = [x1 . . . xC]T ∈ (R≥0)C and
z = [z1 . . . zI]

T ∈ (Z≥0)I . The constraint, as we already said, is given by the
minimum daily requirement of each nutrient. Since each nutrient can be included in
both continuous and discrete food products (see (3.128)), the inequality constraints
are compactly written as

NCx+NIz ≥ R . (3.158)

This is an example of a mixed integer linear program. In general, they can involve
continuous as well integer decision variables and the constraints, both equality and
inequality constraints, are linear. Note that a mixed integer linear program with
z = 0 is purely continuous. Similarly, when x = 0, the problem is purely integer.

Exercise 3.47. Think about some real-life mixed integer linear programs.

Solutions by approximating to integer numbers. For example, in elementary opti-
mization problems when the solution obtained involves fractional people, objects or
other things that cannot be divided.
Of special interest to us are optimization problems where the decision variables can

only take the values zero and one. These problems are called binary optimization
problems. Of course, we can have unconstrained binary optimization problems and
constrained binary optimization problems. In this section we will briefly discuss
some of these problems, in particular unconstrained binary optimization problems
(for reasons we will see in the next section). For completeness, let us formally state
them.
A binary program is an optimization problem with objective function defined on

binary variables. That is, given b = [b1 . . . bn], where bi ∈ {0, 1} for i = 1, 2, . . . , n,
the objective function is of the type

f : {0, 1}n → R , b 7→ f(b) . (3.159)

31

Since the decision variables are binary, the constraint functions (in case they are)
must also be defined on binary variables.
Consider again the knapsack problem. This time, however, suppose that the knap-

sack can at most contain one item of each type. The binary knapsack problem is
stated exactly as above, but now the decision variables are zeros and ones. In real-life
terms, the item is included or not. It then consists in

max
b

cTb , subject to wTb ≤ Wmax and b ∈ {0, 1}n . (3.160)

In general, a binary linear program is an integer linear program with binary, rather
than integer variables. That is, a binary linear program consists in optimizing a
binary linear function subject to binary linear equality and inequality constraints.
To conclude, consider a binary quadratic function,

f(b) = αbTQb+ β cTb , (3.161)

where b ∈ {0, 1}n, Q is a symmetric n × n matrix and α and β are real numbers.
In index notation,

f(b1 . . . bn) = α
n∑

i,j=1

biQijbj + β
n∑

i=1

cibi , (3.162)

where bi ∈ {0, 1} and Qij = Qji. A quadratic unconstrained binary optimization
problem (QUBO problem) aims to find the

min
b

αbTQb+ β cTb or max
b

αbTQb+ β cTb , (3.163)

where b ∈ {0, 1}n is the only restriction on the decision variables b1, . . . , bn.

Exercise 3.48. Suppose that the decision variables do not take the values 0 and 1
but −1 and 1. In this case, how would you state a binary problem?

Exercise 3.49. Show that any QUBO problem can be written as,

min
b

γ bTQ′ b , (3.164)

where Q′ is a symmetric matrix and γ is a real constant.

32

4 Classical Portfolio Optimization Theory

In this section, we discuss the so called modern portfolio theory . This is a standard
topic in financial mathematics and the literature on the subject is vast. Here, we
only review the main concepts and results.
Suppose you have a certain amount of money, cash for that matter, and you want

to invest it in the stock market with the expectation, of course, of making a profit
over a given period of time. The problem you face is the following: what is the
best choice of stocks and the optimal amount of money you have to invest in each
of them so that, at due time, you receive the maximum return on your investment?
This is, in simple words, the portfolio optimization problem. The summary below is
rather complete and self-contained for the purposes of this review.
In Subsection 4.1, we explain the basics of modern portfolio theory and in Subsec-

tion 4.2, we show how this mathematical model is related to continuous optimization.
The case of discrete portfolios is discussed in Subsection 4.3. In particular, we dis-
cuss QUBO problems, the sorts of problems future quantum computers are expected
to tackle efficiently.

4.1 Mathematical Description of an Investment Portfolio

In our modern globalized world, the domestic and international markets offer a
wide variety of options to invest your cash: real estate, government bonds, foreign
currencies, precious metals, cryptocurrencies, and many more. When you exchange
your cash for any of these assets , your intention is to make a future financial benefit.
The way this will benefit you can vary and can be difficult to track. For example,
some investments will save you money and others will produce you a cash inflow.
What is important, though, is that the purpose of owning any of these assets,
whatever their nature, is to increase your wealth.
Out of all these possibilities, we will only consider stocks (shares) of companies

traded in the public market. Since the price of a single stock represents a small
percentage of the value of the entire company, by acquiring a stock, you own a small
part of it. Why we are particularly interested in this financial asset will become
clear in the following pages. For now, let it suffice to say that we want to consider
assets whose prices change rapidly and unpredictably.
Suppose you invest all your money in S stocks, s = 1, 2, . . . , S. This is the price of

your portfolio at the initial time t = 0 and is denoted by pP (0). Assume, moreover,
that the initial price of the stock s is ps(0). Since the initial price of the portfolio is
the sum of the initial prices of the individual stocks, we have that

pP (0) =
S∑

s=1

ps(0) . (4.1)

The stock weight of stock s is defined as the ratio

ws(0) =
ps(0)

pP (0)
. (4.2)

33

Using these relations,

pP (0) =
S∑

s=1

ps(0) =
S∑

s=1

ws(0)pP (0)

= pP (0)
S∑

s=1

ws(0) , (4.3)

giving that (as expected)
S∑

s=1

ws(0) = 1 . (4.4)

Formally speaking, an (investment) portfolio is a given set of initial stock weights,

{w1(0), w2(0), . . . , wS(0)} = {ws(0)}Ss=1 = {ws(0)} . (4.5)

Different sets correspond to different portfolios.
If we want to know whether an initial investment has produced a profit or a loss

over a given period of time, we have to, somehow, compare the initial and final
values of the portfolio. To simplify the following presentation, we first consider the
case of a single stock and then generalize to a multi-stock portfolio.
Given the values of a stock at two different times, ps(0) and ps(T), the simplest

way to compare them is simply by subtracting them. For every stock s, we define
the stock return from t = 0 to t = T as,

rs(T) = ps(T)− ps(0) . (4.6)

When rs(T) > 0, we say that the initial investment on the stock s produced a
profit . In simple words, you made money. If, on the contrary, rs(T) < 0, then we
say that the initial investment produced a loss . That is, you lost money. Finally,
when rs(T) = 0, the investment on the stock s did not produce any profit or loss
and your final wealth is exactly the same as the one you had at the beginning of
the transaction. This is, without a doubt, an extremely simple mathematical model
of a real situation that usually involves many other factors. For example, on the
positive side, a more realistic model could include dividends and interests on the
profit. On the other hand, on the negative side, you may want to include service
fees, taxes and inflation rates. This simple model, though, is the one we will discuss
here. More realistic scenarios can be found in the specialized literature.
Similar to the stock return, the portfolio return from t = 0 to t = T is given by

the difference of the portfolio prices,

rP (T) = pP (T)− pP (0) . (4.7)

When rP (T) > 0, the portfolio produces a profit, and when rP (T) < 0, it produces
a loss. It is easy to show that this equation is equivalent to the sum of all the stock
returns over the same period of time,

rP (T) =
S∑

s=1

rs(T) . (4.8)

Exercise 4.1. Prove the previous equation.

34

Now that we know how much profit (or loss) does a portfolio produce, we want to
compare the performance of different portfolios. In order to compare two portfolios
P1 and P2, we could, for instance, subtract their returns,

∆rP1P2(T) = rP1(T)− rP2(T) . (4.9)

The choice between the two portfolios seems obvious: just pick the portfolio with the
highest return. There is a practical problem with this, though. The problem is that
two portfolios with different prices at the beginning of the transaction can produce
equal returns. From the investor’s point of view it is, of course, more convenient the
portfolio that requires the least initial investment. For this reason, we introduce the
concept of rate of return.
The return rate of the stock s from t = 0 to t = T is defined as

Rs(T) =
rs(T)

ps(0)
=

ps(T)− ps(0)

ps(0)
. (4.10)

Since ps(0) is a positive quantity, the interpretation of the sign of Rs(T) is the same
as the one given above for rs(T).
The portfolio return rate from t = 0 to t = T is

RP (T) =
rP (T)

pP (0)
=

∑S
s=1 rs(T)

pP (0)

=
S∑

s=1

ps(0)

pP (0)
Rs(T) =

S∑
s=1

ws(0)Rs(T) . (4.11)

Since pP (0) is a positive quantity, the interpretation of the sign of RP (T) is the same
as the one given above for rP (T).
Let us use some basic linear algebra to rewrite all the previous formulas in a simpler

way. Price vectors are collections of stock prices,

p(0) =

p1(0)...
pS(0)

 , p(T) =

p1(T)...
pS(T)

 . (4.12)

An investment portfolio is specified by its weight vector at the initial time,

w(0) =

w1(0)
...

wS(0)

 . (4.13)

Condition (4.4) becomes
1Tw(0) = 1 , (4.14)

where the vector 1 = [1 . . . 1]T . Stock return rates are collected in the (portfolio)
return rate vector ,

R(T) =

R1(T)
...

RS(T)

 . (4.15)

35

Using this compact notation, the portfolio return rate (4.11) is written

RP (T) = wT (0)R(T) . (4.16)

So far we have only considered two moments in time, t = 0 and t = T . Suppose
now two periods of time: [0, T] and [T, 2T]. Correspondingly, we have the price
vectors p(0), p(T) and p(2T), the weight vectors w(0) and w(T), and the return
rate vectors R(T) and R(2T). The portfolio return rates during these two periods
are given by

RP (0, T) = wT (0)R(T) , RP (T, 2T) = wT (T)R(2T) . (4.17)

Note that we have introduced a more explicit notation to denote the portfolio return
rates for each of the periods. It is clear that,

RP (0, 2T) = RP (0, T) +RP (T, 2T) . (4.18)

We define the average portfolio return rate as

µP (0, 2T) =
1

2
RP (0, 2T) =

1

2

(
RP (0, T) +RP (T, 2T)

)
. (4.19)

To know whether in a period of time we have, on average, gain or lose money, we
compute

RP (0, T)− µP (0, T) , RP (T, 2T)− µP (0, 2T) . (4.20)

If the quantity if positive (negative), we are making more (less) money than the
average. Of course, since RP (0, T) = µP (0, T), this quantity is only relevant for
more than one periods.
We can generalize all this to N time periods, [0, T], [T, 2T], . . . , [(N−1)T,NT].

In this case, the portfolio return rate at the end of the nth period, for n = 1, 2, . . . N ,
is

RP (0, nT) = RP (0, T) +RP (T, 2T) + . . .+RP

(
(n− 1)T, nT

)
=

n∑
k=1

RP

(
(k − 1)T, kT

)
, (4.21)

with corresponding average portfolio return,

µP (0, nT) =
1

n
RP (0, nT) =

1

n

n∑
k=1

RP

(
(k − 1)T, kT

)
, (4.22)

and average profit (or loss) in the nth period given by

RP

(
(n− 1)T, nT

)
− µP (0, nT) . (4.23)

For simplicity, in the following we will only assume one period of time (N = 1).
The stocks are bought at time t = 0 and the return, whether a profit or a loss, is
decided at time T > 0. What happens in between is unknown to us. This is the
single-period investment model .

36

4.2 The Mean-Variance Model

Suppose again that you own a small part of a big company because you bought
one or more of the company’s stocks. Your expectation as stockholder, that is, as
owner of a small percentage of the company, is to benefit from an increase in the
company’s worth. However, due to unknown and unpredictable factors, the future
value of the company is not certain. It may increase, as you expect, but it may also
decrease, in which case you lose money. There are so many factors at play that even
the prediction of the short-term future of the company’s worth, and consequently
the return on your investment, seems impossible.
The belief that future prices are unpredictable goes back to the pioneering obser-

vations made by Louis Bachelier at the beginning of the 20th century. More than
one century of historical records have confirmed (though, fair to say, not in a con-
clusive manner) that the evolution of the stock prices do not follow any recognizable
pattern. In other words, in finance it is assumed that the analysis of the historical
price changes and economic factors cannot be exploited to predict the future of stock
prices. In fact, the movement of the stock prices is described by a random-walk (the
same phenomenon studied in many areas of physics).
The random-walk theory of stock prices assumes that every market player has

immediate access to all the market information available. So, in case there is a
short-term outperformance of the market by a group of traders, other investors will
immediately recognize the trend and their actions will have an opposite effect on
the market, ultimately restoring randomness.

Note: Since stock prices are random, in the following Box we summarize the main
probability concepts necessary to understand prices and investment portfolios.

Box 4.1. Probability of discrete random variables.

Suppose you perform an experiment many, many times and you always obtain
the same finite number of results, say ω1, ω2, . . . , ωn. We collect all these
outcomes and form the so called sample space,

Ω = {ω1, ω2, . . . , ωn} = {ωi}ni=1 . (4.24)

A discrete random variable is a function X on Ω that assigns a real value to
every possible outcome ωi,

X : Ω → R , ωi 7→ X(ωi) = xi . (4.25)

If ni is the number of occurrences of the outcome ωi and N the number
of experiments (that we assume is as large as necessary), we assign to the
outcome ωi a probability of occurrence pωi

= pi = ni/N . The set of all pairs
(ωi, pωi

),
P = {(ωi, pωi

)}ni=1 , (4.26)

is known as the probability distribution (more precisely, since the number of
outcomes is countable, this is a probability mass function). From the prob-
abilistic point of view, the probability distribution completely characterizes
our system.

37

More abstractly, we define a probability function as a relation that assigns
to every value xi the probability of occurrence of outcome ωi,

P : {xi}ni=1 → [0, 1] , xi = X(ωi) 7→ P
(
X(ωi)

)
= P (xi) = pi . (4.27)

The notation P (X = xi) to denote pi is also of common use. This probability
function, by definition, has the following properties. Firstly, the probability
that an outcome ωi is in Ω is one, usually written P (Ω) = 1. Secondly, the
probability that the experiment gives no result in Ω is zero, written P (∅) = 0.
Thirdly and finally,

P (A) =
∑
α

P
(
X(ωα)

)
, (4.28)

where A ⊆ Ω and ωα ∈ A. The set of outcomes A is called an event . In
particular, as we pointed out,

P (Ω) =
n∑

i=1

P
(
X(ωi)

)
= 1 . (4.29)

The expectation value of a random variable is a quantity that relies on the
historical data provided by the probability distribution. The expected value of
a discrete random variable is also known as its average or mean, and is given
by

E(X) = µX =
1

N

n∑
i=1

ni xi =
n∑

i=1

ni

N
xi =

n∑
i=1

pi xi . (4.30)

The variance measures the variability of the historical values of a random
variable. It is defined as follows,

Var(X) = σ2
X =

1

N

n∑
i=1

ni (xi − µX)
2

=
n∑

i=1

ni

N
(xi − µX)

2 =
n∑

i=1

pi (xi − µX)
2

= E[(X − µX)
2] . (4.31)

The variance measures the spread of the values a random variable with re-
spect to the mean. The greater the variance, the greater its variability and
unpredictability. Instead of using the variance, we can estimate the spread of
a set of data by the standard deviation,

σX =
√

Var(X) =
√
E[(X − µX)2] . (4.32)

The advantage of the standard deviation over the variance is simply that σX

has the same units as xi. This makes it easier to visualize both quantities in
the same plot.
The common behavior of two random variables X1 and X2 can be measured

by using a new quantity known as the covariance between X1 and X2,

σ12 = Cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)] . (4.33)

38

In index notation,

σ12 =
n∑

i,j=1

p
(
x1, i, x2, j

)
(x1, i − µ1)(x2,j − µ2)

=
n∑

i,j=1

pi,j (x1, i − µ1)(x2,j − µ2) , (4.34)

where pi,j = p
(
x1, i, x2, j

)
is the joint probability , that is, the probability that

both x1, i and x2, j occur at the same time. Using that pi,j = pj,i and renaming
the indices, we conclude that

σ21 =
n∑

i,j=1

p
(
x2, i, x1, j

)
(x2, i − µ2)(x1,j − µ1)

=
n∑

i,j=1

p
(
x1, i, x2, j

)
(x1, i − µ1)(x2,j − µ2) = σ12 . (4.35)

Note that, variance and covariance are related by

σ11 = Cov(X1, X1) = E[(X1 − µ1)
2] = σ2

1 . (4.36)

Given two random variables, it is convenient to collect the variances and
covariances in a symmetric 2× 2 covariance matrix ,

Σ(X1, X2) =

[
σ11 σ12

σ21 σ22

]
=

[
σ2
1 σ12

σ12 σ2
2

]
. (4.37)

An S × S covariance matrix can as well be defined for multiple random vari-
ables X1, X2, . . . , XS,

Σ
(
X1, X2, . . . , XS

)
=

σ11 . . . σ1S
... . . .

...
σS1 . . . σSS

 =

 σ2
1 . . . σ1S
... . . .

...
σ1S . . . σ2

S

 . (4.38)

Since, according to the accepted hypothesis, stock prices behave as random vari-
ables, we can only make probabilistic predictions about future stock prices. More
specifically, given the historical data of a stock price, we can calculate the expected
value (arithmetic mean of past prices) and the variance (uncertainty of future prices).
Suppose the sample space Ω = {ωi}ni=1 contains all the possible market scenarios at
time T > 0. We define the price of the stock s at time T as the random variable,

ps(T) : Ω → R≥0 , ωi 7→
(
ps(T)

)
(ωi) = ps(T, ωi) . (4.39)

Note that the codomain of the random variable ps(T) has been constrained to R≥0

because prices cannot be negative. As for any other random variable, definition

39

(4.30) provides the expected price of the stock s at time T ,

E
(
ps(T)

)
=

n∑
i=1

P
(
ps(T, ωi)

)
ps(T, ωi) =

n∑
i=1

pi ps(T, ωi) . (4.40)

Recall that the return of the stock s during the time period [0, T] is given by the
formula (4.6),

rs(T) = ps(T)− ps(0) . (4.41)

Now, since the price of the stock at time T , ps(T), is a random variable, it follows
that the return of the stock at time T , rs(T), is also a random variable,

rs(T) : Ω → R , ωi 7→
(
rs(T)

)
(ωi) = rs(T, ωi) . (4.42)

Note that the codomain of the random variable rs(T) is the entire real line because
returns can be negative (loss), zero or positive (profit). The return rate of stock s,
given by (4.10),

Rs(T) =
rs(T)

ps(0)
=

ps(T)− ps(0)

ps(0)
, (4.43)

is, obviously, also a random variable,

Rs(T) : Ω → R , ωi 7→
(
Rs(T)

)
(ωi) = Rs(T, ωi) . (4.44)

The expected return rate of the stock s is then,

E
(
Rs(T)

)
= E

(
ps(T)− ps(0)

ps(0)

)
. (4.45)

We can write it in terms of the expected price of the stock s at time T as follows,

E
(
Rs(T)

)
=

E
(
ps(T)

)
p2s(0)

. (4.46)

Exercise 4.2. Prove this relation.

If the expected return rate is positive (negative), we anticipate a profit (loss) from
our investment. To have an estimation of the variability of the price of the stock, and
ultimately an estimation of the uncertainty of our investment, we use the variance
of the return rate,

Var
(
Rs(T)

)
=

n∑
i=1

pi
[
Rs(T, ωi)− E

(
Rs(T)

)]2
. (4.47)

To clarify the ideas, consider the simple case of two possible market scenarios ω1

and ω2. We assume that we know the initial price of the stock, ps(0), and the
probabilities p1 and p2 of the two scenarios to occur. Moreover, suppose we know
that, if ω1 (ω2) occurs, the price of the stock becomes ps(T, ω1) (ps(T, ω2)). The
expected price of the stock at time T is then,

E
(
ps(T)

)
= p1ps(T, ω1) + p2ps(T, ω2) . (4.48)

We can use this result to find the expected return rate,

E
(
Rs(T)

)
=

p1ps(T, ω1) + p2ps(T, ω2)

ps(0)2
. (4.49)

The variance, on the other hand, is given by

Var
(
Rs(T)

)
= p1

[
Rs(T, ω1)− E

(
Rs(T)

)]
+ p2

[
Rs(T, ω2)− E

(
Rs(T)

)]
. (4.50)

40

Exercise 4.3. Do it for three possible scenarios.

For actual financial portfolios, we have to consider multiple stocks, the prices of
which are random variables. Consider, for example, a portfolio with two stocks s
and s′. Suppose an initial investment,

pP (0) = ws(0)pP (0) + ws′(0)pP (0) . (4.51)

As we saw in (4.11), the portfolio return rate at a later time T is given by

RP (T) = ws(0)Rs(T) + ws′(0)Rs′(T) . (4.52)

Assume now two possible future scenarios ω1 and ω2, with corresponding probabil-
ities of occurrence p1 and p2. Moreover, suppose we know the prices of the stocks
in each case: ps(T, ω1), ps′(T, ω1), ps(T, ω2), and ps′(T, ω2). The expected portfolio
return rate is

E
(
RP (T)

)
= ws(0)E

(
Rs(T)

)
+ ws′(0)E

(
Rs′(T)

)
, (4.53)

where

E
(
Rs(T)

)
= p1Rs(T, ω1) + p2Rs(T, ω2) , (4.54)

E
(
Rs′(T)

)
= p1Rs′(T, ω1) + p2Rs′(T, ω2) . (4.55)

The variance of the portfolio return rate is

Var
(
RP (T)

)
= p1

[
RP (T, ω1)− E

(
RP (T)

)]2
+ p2

[
RP (T, ω2)− E

(
RP (T)

)]2
. (4.56)

Exercise 4.4. Show that this equation is equivalent to saying that

Var
(
RP (T)

)
= w2

s(0)Var
(
Rs(T)

)
+ w2

s′(0)Var
(
Rs′(T)

)
+ 2p1ws(0)ws′(0)

[
Rs(T, ω1)− E

(
Rs(T)

)][
Rs′(T, ω1)− E

(
Rs′(T)

)]
+ 2p2ws(0)ws′(0)

[
Rs(T, ω2)− E

(
Rs(T)

)][
Rs′(T, ω2)− E

(
Rs′(T)

)]
= w2

s(0)Var
(
Rs(T)

)
+ w2

s′(0)Var
(
Rs′(T)

)
+ 2ws(0)ws′(0)

2∑
i=1

pi
[
Rs(T, ωi)− E

(
Rs(T)

)][
Rs′(T, ωi)− E

(
Rs′(T)

)]
.

Using the covariance between two random variables (4.33), we arrive at

Var
(
RP (T)

)
= w2

s(0)Var
(
Rs(T)

)
+ w2

s′(0)Var
(
Rs′(T)

)
+ 2ws(0)ws′(0)Cov

(
Rs(T), Rs′(T)

)
. (4.57)

For simplicity, we switch to the sigma notation for variances and covariances,

Var
(
RP (T)

)
= σ2

P (T) , (4.58)

Var
(
Rs(T)

)
= σss(T) = σ2

s(T) , (4.59)

Cov
(
Rs(T), Rs′(T)

)
= σss′(T) . (4.60)

With this notation, the variance of the portfolio return rate becomes

σ2
P (T) = w2

s(0)σ
2
s(T) + w2

s′(0)σ
2
s′(T) + 2ws(0)ws′(0)σss′(T) . (4.61)

41

Exercise 4.5. Suppose a portfolio composed of two stocks s and s′ that satisfy

σss′(T) = σs(T)σs′(T) , (4.62)

where σs(T), σs′(T) ̸= 0. Show that the variance of the portfolio return rate is zero
when the initial investment is such that

ws(0) =
σs′(T)

σs′(T)− σs(T)
. (4.63)

How much is invested in the stock s′? What happens when σs(T) > σs′(T)? Prove
that the lower the expected return rate of the stock s′, the worthier the investment
in this portfolio.

Exercise 4.6. Suppose a portfolio of two uncorrelated stocks s and s′ and assume
that we know the expected return rates and variances of the two individual stocks.
Prove that the variance of the portfolio return rate is

σ2
P (T) =

(
E
(
RP (T)

)
−Rs′(T)

E
(
Rs(T)

)
−Rs′(T)

)2

σ2
s(T) +

(
E
(
Rs(T)

)
− E

(
RP (T)

)
E
(
Rs(T)

)
−Rs′(T)

)2

σ2
s′(T) .

What is the expected portfolio return rate corresponding to a minimum variance?
Show that the portfolio is given by

ws(0) =
σ2
s′

σ2
s + σ2

s′
, ws′(0) =

σ2
s

σ2
s + σ2

s′
. (4.64)

The generalization to portfolios with more than two stocks, s = 1, 2, . . . , S, is
straightforward. The expected portfolio return rate is simply,

E
(
RP (T)

)
=

S∑
s=1

ws(0)E
(
Rs(T)

)
, (4.65)

where, assuming n possible future scenarios,

E
(
Rs(T)

)
=

n∑
i=1

piRs(T, ωi) . (4.66)

A slightly shorter notation writes

E
(
RP (T)

)
= µP (T) , E

(
Rs(T)

)
= µs(T) , (4.67)

yielding

µP (T) =
S∑

s=1

ws(0)µs(T) . (4.68)

The weight vector w(0) = [w1(0) . . . wS(0)]
T and the vector of expected return

rates µ(T) = [µ1(T) . . . µS(T)]
T can be used to give

µP (T) = wT (0)µ(T) = µT (T)w(0) . (4.69)

42

Similarly, the variance of the return rate of a portfolio of S stocks is given by
summing over all stocks s, s′ = 1, 2, . . . S in (4.61),

σ2
P (T) =

S∑
s=1

w2
s(0)σ

2
s(T) + 2

S∑
s,s′=1
s ̸=s′

ws(0)ws′(0)σss′(T)

=
S∑

s=1

ws(0)σss(T)ws(0)

+
S∑

s,s′=1
s<s′

ws(0)σss′(T)ws′(0) +
S∑

s,s′=1
s>s′

ws(0)σ
2
ss′(T)ws′(0) . (4.70)

We use the general covariance matrix (4.38) corresponding to S random variables,

Σ
(
R1(T), . . . , RS(T)

)
= Σ

(
R(T)

)
=

σ11(T) . . . σ1S(T)
... . . .

...
σS1(T) . . . σSS(T)

 , (4.71)

and the weight vector of S stocks, w(0) = [w1(0) . . . wS(0)]
T , to write the variance

of the portfolio return rate in a more compact form,

σ2
P (T) = wT (0)Σ

(
R(T)

)
w(0) . (4.72)

From here, we obtain the standard deviation,

σP (T) =
√
wT (0)Σ

(
R(T)

)
w(0) . (4.73)

Associated to the variance of a portfolio return rate is the concept of risk . Risk
is, simply put, the possibility of losing money from an investment. The greater the
volatility of the individual stocks in a portfolio, that is, the standard deviation of
their prices, the greater the possibility of losing money. Since two or more stocks in
a portfolio can be correlated, it is indeed the covariance matrix that measures the
risk of an investment portfolio. Of course, not all assets are risky. Think about,
for example, the cash you keep at home or the money in the bank earning a fixed
interest. These sorts of assets are called risk-free or riskless assets . Here, we are
not interested in them, though. We are only interested in risky assets , for instance,
stocks whose prices change randomly in time.
In the modern portfolio theory , also known as the mean-variance model , it is as-

sumed that risk is directly proportional to the variance of the portfolio return rate.
That is, the higher the variance of the portfolio return rate, the higher the risk.
Note that, according to this definition, risk also implies the possibility of making
more money than expected. However, risk usually has a negative connotation and
it is interpreted as the possibility of making less money than expected or to lose
money. If we define risk tolerance, denoted by R, as the level of risk an investor is
willing to take, we have that the portfolio w(0) must be constructed such that

wT (0)Σ
(
R(T)

)
w(0) ≤ R . (4.74)

Equivalently, we can write

αwT (0)Σ
(
R(T)

)
w(0) = R , (4.75)

where the positive quantity α is the risk aversion coefficient .

43

Exercise 4.7. Use this definition of risk to interpret the Exercises 4.5 and 4.6.

Before moving to the optimization of portfolios, something that we will discuss in
the next subsection, let us examine some additional facts about the modern portfolio
theory. For simplicity, let us consider portfolios with only two stocks.
Suppose that the variance of the return rate of each stock is known, σ2

s and σ2
s′ , as

well as the covariance of their return rates, σss′ . Recalling that ws(0) + ws′(0) = 1,
we can write the standard deviation of the portfolio return rate (4.61) exclusively
in terms of ws(0),

σP (T) =

√
w2

s(0)σ
2
s(T) +

(
1− ws(0)

)2
σ2
s′(T) + 2ws(0)

(
1− ws(0)

)
σss′(T) . (4.76)

Let us try to visualize this. First, we define the function

γ1 : [0, 1] → R , ws(0) 7→ γ1
(
ws(0)

)
= σP (T) . (4.77)

This function on the single variable ws(0) substitutes σP (T),

γ1
(
w(0)

)
=

√
w2

s(0)σ
2
s(T) +

(
1− ws(0)

)2
σ2
s′(T) + 2ws(0)

(
1− ws(0)

)
σss′(T) .

(4.78)

Assuming that we know the expected return rate of each stock, µs(T) and µs′(T),
and using ws′(0) = 1− ws(0), the expected portfolio return rate (4.68) becomes

µP (T) = ws(0)µs(T) +
(
1− ws(0)

)
µs′(T) . (4.79)

We now define a second function,

γ2 : [0, 1] → R , ws(0) 7→ γ2
(
ws(0)

)
= µP (T) . (4.80)

That is, we substitute µP (T) by the function γ2 of ws(0),

γ2
(
ws(0)

)
= ws(0)µs(T) +

(
1− ws(0)

)
µs′(T) . (4.81)

We then use these functions to define a parameterized curve on the Cartesian plane,

γ =

[
γ1

γ2

]
: [0, 1] → R2 , ws(0) 7→ γ

(
ws(0)

)
=

[
γ1
(
ws(0)

)
γ2
(
ws(0)

)] =

[
σP (T)

µP (T)

]
. (4.82)

The image {γ[0, 1]} is called the risk curve.

Exercise 4.8. Show that the risk curve is a hyperbola.

Fig. 2. The risk curve of a two-stock portfolio.

44

The risk curve helps visualize at a glance how the expected portfolio return rate
is related to the investment risk. The horizontal axis measures the risk, σP (T), and
the vertical axis measures the expected return rate, µP (T). An investor can, for
example, decide in advance an acceptable level of risk and then look at the risk
curve to check how much return is expected for such level of risk. Alternatively,
the investor can decide in advance how much return he or she expects from the
investment and then consider if the risk is tolerable. The risk curve confirms the
common knowledge that the higher (lesser) the risk, the higher (lesser) the potential
profit or loss.
Note that, for some risk levels, the risk curve has two possible expected portfolio

return rates. Since investors are interested in portfolios with the highest expected
return rate, we can discard the lower part of the curve. That is, instead of ws(0) ∈
[0, 1], we have ws(0) ∈ [a, 1], with a the value of ws(0) where the risk curve has
a vertical slope. We can, therefore, substitute the two-dimensional parameterized
curve γ by the real-value function

µ̄P : [γ1(a), γ1(1)] → R , σP (T) 7→ µ̄P

(
σP (T)

)
. (4.83)

Exercise 4.9. Find the explicit expression of µ̄P

(
σP (T)

)
.

The graph of the function µ̄P ,

G(µ̄P) =
{(

σP (T), µ̄P

(
σP (T)

))
| σP (T) ∈

[
γ1(a), γ1(1)

]}
, (4.84)

is known as the efficient frontier . Points in the efficient frontier correspond to
optimal or efficient portfolios . Since µ̄P is a monotonically increasing function,
portfolios with higher (lesser) potential return rates are uniquely associated with
higher (lesser) risks
If points in the efficient frontier are associated to efficient portfolios, that is, port-

folios that maximize expected return rates for given levels of risk, points below the
efficient frontier correspond to suboptimal or inefficient portfolios . An inefficient
portfolio is one for which the values of ws(0) and ws′(0) are such that the invest-
ment risk is not worth the potential return. In fact, all the points to the left of an
inefficient portfolio have the same expected return rate but with lesser investment
risk. In mathematical language, an inefficient portfolio is associated to a point(

σP (T), µ̄P

(
σP (T)

))
∈ hyps µ̄P , (4.85)

where the strict hypograph of µ̄P is the set,

hyps µ̄P =
{
(σP (T), Y) ∈

[
γ1(a), γ1(1)

]
× R | Y < µ̄P

(
σP (T)

)}
. (4.86)

The attainable set are all the points in the Cartesian plane associated to efficient
and inefficient portfolios. Mathematically speaking, these are the points in the graph
and the strict hypograph of µ̄P . In other words, the attainable set contains all the
points in the hypograph of µ̄P ,

hyp µ̄P =
{
(σP (T), Y) ∈

[
γ1(a), γ1(1)

]
× R | Y ≤ µ̄P

(
σP (T)

)}
. (4.87)

45

Fig. 3. The efficient frontier and the attainable set.

To conclude, let us see how the shape of a risk curve depends on the covariance of
the expected return rates of the stocks s and s′. We define the correlation coefficient
as

ρss′(T) =
σss′(T)

σs(T)σs′(T)
. (4.88)

Because
−σs(T)σs′(T) ≤ σss′(T) ≤ σs(T)σs′(T) , (4.89)

it follows that
−1 ≤ ρss′(T) ≤ +1 . (4.90)

Exercise 4.10. Prove (4.89).

The full expression of ρss′(T) is

ρss′(T) =

∑
ij p

(
Rs,i(T), Rs′,j(T)

)[
Rs,i(T)− µs(T)

][
Rs,j(T)− µs′(T)

]√∑
i p(Rs,i(T))

[
Rs,i(T)− µs(T)

]2√∑
j Rs′,j(T))

[
Rs′,j(T)− µs′(T)

]2 ,
(4.91)

where we have written Rs,i(T) = Rs(T, ωi) and the coefficients p
(
Rs,i(T), Rs′,j(T)

)
are the joint probabilities (see (4.34) for details) .
Since the covariance of two random variables measures the degree of relation be-

tween them, so does the correlation coefficient. In our case, the correlation coefficient
measures the relation between the expected return rates of the two stocks s and s′.
If ρss′(T) = −1, we say that the expected return rates of the two stocks are “per-
fectly negative correlated”. What this means is that when the expected return rate
of one of the stocks is the highest, the expected return rate of the second stock is the
lowest. When ρss′(T) = +1, we say that the expected return rates of the two stocks
are “perfectly positive correlated”. That is, if the expected return rate of one stock
is the highest (lowest), the same happens with the other. Finally, when ρss′(T) = 0,
the return rates are uncorrelated. Two stocks are said to be uncorrelated when the
return rate of one of them tells us nothing about the other. Between perfectly neg-
ative an perfectly positive correlation, there is a wide variety of situations. Roughly
speaking, when the correlation coefficient is near −1 or +1, we say that the prices
are strongly negative or positive correlated. On the other hand, when it is near 0,
we say that they are weakly correlated. The exact use of these degrees of correlation
depends on the specific situation under study.

46

Using the correlation coefficient ρss′(T), the standard deviation of the portfolio
return rate becomes

σP (T) =

√
w2

s(0)σ
2
s(T) +

(
1− ws(0)

)2
σ2
s′(T) + 2ws(0)

(
1− ws(0)

)
ρss′(T)σs(T)σs′(T) .

(4.92)

Exercise 4.11. Use the result of Exercise (4.9) to write µ̄P

(
σP (T)

)
in terms of the

correlation coefficient ρss′(T). Plot µ̄P

(
ρss′(T)

)
for several values of ρss′(T) between

−1 and +1.

Fig. 4. Risk curves for correlation coefficients between −1 and +1.

In order to mitigate risk, a savvy investor will try to choose stocks that are as
negative correlated as possible. The same strategy applies to portfolios with more
than two stocks. Ideally, the portfolio is constructed with stocks that are perfectly
negative correlated. That is, if the portfolio contains S stocks, any two stocks s
and s′ in S should ideally satisfy −1 ≲ ρss′ . By proceeding in this way, the investor
assures that the losses of some stocks are balanced by the gains generated by the
other stocks. This risk management strategy is what is know as diversification. A
diversified portfolio comes, however, with a cost: it decreases the chances of losing
money, but at the same time it reduces the potential reward.

4.3 Portfolio Optimization as a Quadratic Programming

An investor will try to maximize the expected return rate of his or her portfolio
while at the same he or she tries to keep the risk at a tolerable level. The choice
of the portfolio, that is, of the weight vector w(0), determines the portfolio return
rate according to the formula (4.69),

µP (T) = µT (T)w(0) , (4.93)

where 1Tw(0) = 1. On the other hand, the risk is proportional to the variance of
the portfolio return rate (4.75),

R = ασ2
P (T) = αwT (0)Σ

(
R(T)

)
w(0) . (4.94)

The optimization problem the investor has to solve is,

max
w(0)

µT (T)w(0) , (4.95)

47

subject to
αwT (0)Σ

(
R(T)

)
w(0) = R , (4.96)

and 1Tw(0) = 1. In the following, we will simplify the notation by simply writing,

max
w

µTw , subject to αwT Σw = R and 1Tw = 1 . (4.97)

Since an optimal portfolio has a unique expected return for every level of risk, and
vice versa, instead of choosing a level of risk and look for the maximum return, the
investor can equivalently choose an expected return M and look for the minimum
risk. The optimization problem thus becomes,

min
w

αwT Σw , subject to µTw = M and 1Tw = 1 . (4.98)

So far we have considered portfolios with continuous decision variables ws(0) ∈
(0, 1), for every s = 1, 2, . . . , S. In order to convert this problem into a binary
problem, we use the following mathematical trick. First, recall that the stock weight
of a stock s = 1, 2, . . . , S, is given by (4.2),

ws(0) =
ps(0)

pP (0)
. (4.99)

Suppose we now introduce a quantity,

w̃s(0) =

{
0 if the stock s is not in the portfolio,

ws(0) if the stock s is in the portfolio.

It is easy to check that nothing changes in the previous pages if we substitute ws(0)
by w̃s(0). Equivalently, we can write w̃s(0) as

w̃s(0) = bs(0)ws(0) , (4.100)

where

bs(0) =

{
0 if the stock s is not in the portfolio,

1 if the stock s is in the portfolio.

The expected portfolio return rate (4.68) can thus be written as

µP (T) =
S∑

s=1

bs(0)ws(0)µs(T) =
S∑

s=1

bs(0)µ
fr
s (T) , (4.101)

where µfr
s (T) is the fractional expected return rate of the stock s. If we collect all

the binary quantities bs(0) in a vector,

b(0) = [b1(0) b2(0) . . . bS(0)]
T , (4.102)

as well as the fractional expected return rates,

µfr(T) = [µfr
1 (T) µfr

2 (T) . . . µfr
S (T)]T , (4.103)

the expected portfolio return rate will be given by

µP (T) = bT (0)µfr(T) . (4.104)

48

The portfolio return rate (4.11) can be rewritten in a similar way as,

RP (T) =
S∑

s=1

bs(0)ws(0)Rs(T) =
S∑

s=1

bs(0)R
fr
s (T) , (4.105)

where Rfr
s (T) is the fractional return rate of the stock s. Collecting all the fractional

return rates in the column vector

Rfr(T) = [Rfr
1 (T) Rfr

2 (T) . . . Rfr
S (T)]T , (4.106)

the portfolio return rate becomes,

RP (T) = bT (0)Rfr(T) . (4.107)

You can easily check that the variance of the portfolio return rate has the following
expression,

σ2
P (T) = bT (0)Σ

(
Rfr(T)

)
b(0) . (4.108)

Exercise 4.12. Complete the missing steps of the previous statement.

Any portfolio optimization problem can thus be written as,

min
b(0)

αbT (0)Σ
(
Rfr(T)

)
b(0) , subject to bT (0)µfr(T) = M , (4.109)

where b(0) ∈ {0, 1}S.
The goal of a binary portfolio optimization problem is to

min
b

αbT Σb , subject to µTb = M , (4.110)

where b ∈ {0, 1}S and Σ is a symmetric matrix. To simplify the notation we have
written µT = (µfr)T . In index notation,

min α
S∑

s,s′=1

bsΣss′ bs′ , subject to
S∑

s=1

µsbs = M , (4.111)

where bs ∈ {0, 1} and Σss′ = Σs′s. This is a quadratic binary optimization problem
with one linear constraint. We can use the Lagrange multipliers method summarized
in (3.118) to restate the problem as an unconstrained problem,

min α

S∑
s,s′=1

bs Σss′ bs′ − µ
(S∑

s=1

µsbs −M
)

= min α

S∑
s,s′=1

bsΣss′ bs′ − µ

S∑
s=1

µsbs + µM . (4.112)

For consistency with (3.118), we have used µ to denote the Lagrange multiplier.
However, to avoid any confusion with expected return rates that we are also denoting
with the letter µ, from now on we will denote the Lagrange multiplier with the letter
λ. Our optimization problem is thus,

min α
S∑

s,s′=1

bs Σss′ bs′ − λ
S∑

s=1

µsbs + λM . (4.113)

49

Finally, since λM is just a constant, the problem we have to solve is basically a
QUBO problem (3.163),

min α

S∑
s,s′=1

bs Σss′ bs′ − λ
S∑

s=1

µsbs . (4.114)

50

5 Quantum Portfolio Optimization

Now that we have reviewed the basics of quantum computing, optimization theory
and modern portfolio theory, we are finally ready to present the quantum algorithm
that, many believe, will help optimize investment portfolios. It is worth noting
that, to this day, this algorithm has not been proved to be more efficient than the
classical algorithms already in use. However, due to the computational complexity
of financial problems, this algorithm as well as other similar algorithms proper of
the NISQ era, are at the moment of writing the only possibilities available to us.
Only future theoretical and practical results will settle the debate concerning the
advantage of this algorithm.
The algorithm in question is the so called Quantum Approximate Optimization Al-

gorithm (QAOA), introduced by Edward Farhi an collaborators about ten years ago.
The QAOA is a hybrid quantum-classical algorithm, a topic we already discussed in
Subsection 2.3. For convenience, let us resume the discussion where we left it.

5.1 The Quantum Approximate Optimization Algorithm

The present NISQ era is characterized by noisy quantum devices and a relatively
small number of coherent qubits. In fact, there is a wide consensus among experts
that reliable quantum computers will only be available in the long term. Because of
this, scientists have proposed a new breed of algorithms known as hybrid quantum-
classical algorithms . The basic idea of these hybrid models is to assign the most
complicated part of the problem to a quantum computer and leave the rest of the op-
timization problem to a classical machine whose efficiency has already been proved.
From the practical point of view, the advantage of these hybrid devices is that the
quantum subroutine only needs a small number of coherent qubits and a shallow
circuit to operate, a technological level that is expected to be reached in the near
future.
The quantum approximate optimization algorithm (QAOA) is one of such algo-

rithms. A quantum circuit is used to model the objective function we want to
optimize. Moreover, the qubit that enters this circuit, the so called trial state, is
also prepared by a set of quantum gates. The implementation of this quantum cir-
cuit is, from the technological viewpoint, the most difficult part of the algorithm. It
not only encodes the cost function and prepares the trial state, it is also constantly
updated with the new variational parameters suggested by the classical optimizer.

5.2 Portfolio Optimization via the QAOA

As we have seen in (4.114), a binary portfolio optimization problem aims at

min α
S∑

s,s′=1

bsΣss′bs′ −
S∑

s=1

µsbs , (5.1)

where bs is a binary variable, bs ∈ {0, 1}, and Σ is a symmetric matrix, Σss′ = Σs′s.
According to the variational quantum method, we can minimize the objective

function

f(b1, . . . bs . . . , bS) = α

S∑
s,s′=1

bsΣss′bs′ −
S∑

s=1

µsbs , (5.2)

51

by constructing a parameterized Hamiltonian operator Ĥ and finding its minimum
expectation value,

min f(b1, . . . bs . . . , bS) = min ⟨Q|Ĥ|Q⟩ . (5.3)

The vector |Q⟩ belongs to a Hilbert space of dimension 2S, |Q⟩ ∈ H2S , and rep-
resents the physical state of a qubit. A possible basis for H2S is the computational
basis {|b1 · · · bs · · · bS⟩}, where the entries of each vector |b1 · · · bs · · · bS⟩ are as-
sociated to their corresponding stocks (bs = 1 if the stock s is in the portfolio and
bs = 0 if it does not). We can thus express |Q⟩ as a linear superposition of these
basis vectors,

|Q⟩ =
S∑

s=1

α... bs ... | · · · bs · · · ⟩ . (5.4)

The construction of the Hamiltonian in terms of Pauli operators is relatively simple.
For this, recall that,

Z |0⟩ = |0⟩ = (1− 2 · 0) |0⟩ , (5.5)

Z |1⟩ = − |1⟩ = (1− 2 · 1) |1⟩ . (5.6)

In more compact notation,
Z |b⟩ = (1− 2b) |b⟩ . (5.7)

We can reverse this relation,

b |b⟩ = 1

2
(I − Z) |b⟩ . (5.8)

Therefore, for every vector |bs⟩ = | · · · bs · · · ⟩ we have that

bs |bs⟩ =
1

2
(I − Zs) |bs⟩ , (5.9)

where Zs = I ⊗ . . . ⊗ Zs ⊗ . . . ⊗ I. The operator associated to the linear term in
(5.2) is

S∑
s=1

µsbs 7→
S∑

s=1

µs

2
I −

S∑
s=1

µs

2
Zs . (5.10)

The operator associated to the quadratic term in (5.2) is obtained in a similar
fashion,

α

S∑
s,s′=1

bsΣss′bs′ 7→ α

S∑
s,s′=1

1

2
(I − Zs) Σss′

1

2
(I − Zs′)

= α
S∑

s,s′=1

Σss′

4
(I − Zs′ − Zs + ZsZs′)

= α
S∑

s,s′=1

Σss′

4
− α

S∑
s,s′=1

Σss′

2
Zs + α

S∑
s,s′=1

Σss′

4
ZsZs′ . (5.11)

(Remember the hermiticity of the Pauli operator Z, Z = Z†.)

52

Exercise 5.1. Compare this expression with the result of Exercise 3.48.

We conclude that the Hamiltonian operator associated with the cost function (5.2)
is,

Ĥ = α

S∑
s,s′=1

Σss′

4
ZsZs′ −

S∑
s=1

1

2

(
α

S∑
s′=1

Σss′ − µs

)
Zs

+
S∑

s=1

1

2

(
α

S∑
s′=1

Σss′

2
− µs

)
I . (5.12)

To render this expression more manageable, we write

ĤZZ = α

S∑
s,s′=1

Σss′

4
ZsZs′ , ĤZ = −

S∑
s=1

1

2

(
α

S∑
s′=1

Σss′ − µs

)
Zs , (5.13)

and

ĤI =
S∑

s=1

1

2

(
α

S∑
j=1

Σss′

2
− µs

)
. (5.14)

That is,
Ĥ = ĤZZ + ĤZ + ĤI . (5.15)

The first two terms define the cost Hamiltonian,

ĤC = ĤZZ + ĤZ = α
S∑

s,s′=1

Σss′

4
ZsZs′ −

S∑
s=1

1

2

(
α

S∑
s′=1

Σss′ − µs

)
Zs . (5.16)

Its corresponding unitary evolution operator is

UC(γ) = e−iγĤC = e−iγĤZZe−iγĤZ , (5.17)

where γ is a positive parameter. Note that we have used the Campbell-Hausdorff
formula and the fact that Pauli-Z operators commute between them. More explicitly,

UC(γ) = exp
[
− iγ α

S∑
s,s′=1

Σss′

4
ZsZs′

]
exp

[
iγ

S∑
s=1

1

2

(
α

S∑
s′=1

Σss′ − µs

)
Zs

]
. (5.18)

At this point, we would like to know how to build the quantum gates corresponding
to these unitaries. In order to do this, we just need to remember that the rotation
of a single qubit around the a axis, with a = x, y, z, is given by (see QC1, equation
(3.25)),

Ra(θa) = e−iσaθa/2 = cos(θa/2)I − i sin(θa/2)σa . (5.19)

The gates associated to the two exponentials in (5.17) are obtained as follows. Con-
sider first,

e−i γĤZ = exp
[S∑

s=1

i
γ

2

(
α

S∑
s′=1

Σss′ − µs

)
Zs

]

=
S⊗

s=1

exp
[
i
γ

2

(
α

S∑
s′=1

Σss′ − µs

)
Zs

]
. (5.20)

53

To simplify the notation, we write

as = − 1

2

(
α

S∑
s′=1

Σss′ − µs

)
, (5.21)

so that

e−iγĤZ =
S⊗

s=1

e−iγasZs . (5.22)

Using the result we found in QC1, equation (4.72), this unitary is equivalent to

e−iγĤZ =
S⊗

s=1

e−iγasZs =
S⊗

s=1

Rz(2γas) . (5.23)

This means that every qubit s = 1, 2, . . . , S, is rotated an angle 2γas about the z
axis.

b1 Rz(2γa1)

...

bs Rz(2γas)

...

bS Rz(2γaS)

Fig. 5

The gates corresponding to the other exponential in (5.17),

e−iγĤZZ = exp
[
− iγ

S∑
s,s′=1

αΣss′

4
ZsZs′

]
, (5.24)

are a bit more complicated to figure out.

Exercise 5.2. Show that given two arbitrary single qubits |bs⟩ and |bs′⟩,

e−iδZsZs′ |bs⟩ |bs′⟩ = CNOT(I ⊗Rz(2δ)) CNOT |bs⟩ |bs′⟩ . (5.25)

Draw the corresponding gates.

Thus, with αΣss′/4 = ass′ , we conclude that

e−iγĤZZ = exp
[S∑
s,s′=1

−iγass′ ZsZs′

]
=

S⊗
s,s′=1

e−iγass′ ZsZs′

=
S⊗

s=1
s′<s

CNOTss′ (I ⊗Rz(2γass′)) CNOTss′ . (5.26)

54

The corresponding gates are as follows,

bs

b′s
⊕

Rz(2γa
′
ss)

⊕

...

...

Fig. 6

Regarding the qubit that enters the circuit, it is common to choose |Q⟩in = |+⟩⊗S.

Exercise 5.3. Prove that a Hadamard gate acts on a single qubit computational
basis vector as

H |b⟩ = 1√
2

∑
b′

(−1)bb
′ |b′⟩ . (5.27)

Show that in general,

H⊗S |b1 . . . bS⟩ =
1√
2S

∑
b′s

(−1)b1b
′
1+ ...+bSb

′
S |b′1 . . . b′S⟩ . (5.28)

Thus, the initial qubit |Q⟩in = |+⟩⊗S is prepared by applying a Hadamard gate to
each individual single qubit |bs⟩ = |0⟩,

|Q⟩in = |+⟩⊗S = H⊗S |0 . . . 0⟩ = 1√
2S

∑
b′s

|b′1 . . . b′S⟩ . (5.29)

In this case, the state that comes out of the gate UC(γ) is

UC(γ) |Q⟩in = UC(γ)
1√
2S

∑
b′s

|b′1 . . . b′S⟩ . (5.30)

Regardless of the initial qubit state we choose to enter the quantum circuit, the
QAOA stipulates that we follow the unitary UC(γ) with a second unitary, this one
associated with the so called mixer Hamiltonian,

ĤM =
S∑

s=1

Xs . (5.31)

The corresponding parameterized unitary is given by

UM(β) = e−iβĤM = e−iβ
∑S

s=1 Xs =
S⊗

s=1

e−iβXs . (5.32)

Note that, since UM(β) does not commute with UC(γ), the strict order is UC(γ)
followed by UM(β). Using the result obtained in QC1, Exercise 4.23,

UM(β) =
S⊗

s=1

HRz(2β)H . (5.33)

55

Finally, since HZH = X,

UM(β) =
S⊗

s=1

Rx(2β) . (5.34)

H Rz(2β) H = Rx(2β)

Fig. 7

The qubit state that exits the quantum circuit UC(γ) followed by UM(β), is now
parameterized by the angles γ and β,

|Q(γ, β)⟩ = UM(β)UC(γ) |Q⟩in . (5.35)

This is the ansatz state that we use to measure the cost Hamiltonian (5.16),

⟨Q(γ, β)| ĤC |Q(γ, β)⟩ . (5.36)

Since the expectation value of the cost Hamiltonian is a real-valued function of both
parameters γ and β, we write

F (γ, β) = ⟨Q(γ, β)| ĤC |Q(γ, β)⟩ . (5.37)

The measurements of the cost Hamiltonian are sent to a classical optimizer in order
to propose better values for γ and β. The process is then repeated as many times
as necessary until we reach a good approximation (γ∗, β∗).

Exercise 5.4. If the Hamiltonian that encodes the cost function is Ĥ = ĤC + ĤI ,
see (5.15) and (5.16), why do we compute the expectation value of ĤC instead of
ĤC + ĤI?

The QAOA asserts that, rather than optimizing for a single pair of parameters
(γ, β), a better approximation can be found if we create a sequence of unitaries
UC(γ) and UM(β), each of them with its own angle parameter. That is, the QAOA
prescribes that we let the initial state |Q⟩in enter the following parameterized se-
quence of gates,

|Q⟩in → UM(βp)UC(γp) . . . UM(βk)UC(γk) . . . UM(β1)UC(γ1) |Q⟩in

= |Q(γ1, . . . , γk, . . . , γp, β1, . . . , βk, . . . , βp)⟩ . (5.38)

Each pair of unitaries UM(βk)UC(γk), for k = 1, 2, . . . , p, is called a layer . Specif-
ically, UM(βk)UC(γk) is the kth layer, with UC(γk) called the kth cost layer and
UM(γk) the kth mixer layer . It has been proved that the larger the number of
layers, the better the approximation of the optimization problem. Needless to say,
the number of layers has to be kept within a reasonable limit to ensure that the
calculation is not affected by excessive noise.
In total, there are 2p parameters to be optimized variationally: p angles γk and

p angles βk. We can gather all these variational parameters in a more compact

56

notation, γ = (γ1, . . . , γk, . . . , γp) and β = (β1, . . . , βk, . . . , βp). The ansatz state is
thus

|Qp(γ,β)⟩ =
p∏

k=1

UM(βk)UC(γk) |Q⟩in . (5.39)

The function in 2p variables that the classical computer has to optimize is

Fp(γ,β) = ⟨Qp(γ,β)| ĤC |Qp(γ,β)⟩ . (5.40)

The optimal portfolio will thus be given by the solution of the minimization problem,

min
γ,β

Fp(γ,β) = min
γ,β

⟨Qp(γ,β)| ĤC |Qp(γ,β)⟩ . (5.41)

57

6 Bibliography

Due to the pedagogical nature of these notes, the following bibliography is far from
exhaustive. Check the references below for a complete list of original papers and
comprehensive survey articles on each of the topics discussed above.

[1] K. Bharti et al, “Noisy Intermediate-Scale Quantum (NISQ) Algorithms”.

[2] K. Blekos et al, “A Review on Quantum Approximate Optimization Algorithm
and Its Variants”.

[3] A. Bouland et al., “Prospects and Challenges of Quantum Finance”.

[4] A. Canabarro et al., “Quantum Finance”. In Portuguese.

[5] M. J. Capiński and E. Kopp, Portfolio Theory and Risk Management.

[6] M. Cerezo et al, “Variational Quantum Algorithms”.

[7] G. Cornuéjols et al, Optimization Methods in Finance.

[8] D. J. Egger et al., “Quantum Computing for Finance”.

[9] E. Farhi et al., “A Quantum Approximate Optimization Algorithm”.

[10] F. Glover et al., “Quantum Bridge Analytics I: A Tutorial on Formulating and
Using QUBO Models”.

[11] D. A. Herman et al., “A Survey of Quantum Computing for Finance”.

[12] M. S. Joshi and J. M. Paterson, Introduction to Mathematical Portfolio Theory.

[13] I. Kerenidis et al., “Quantum Algorithms for Portfolio Optimization”.

[14] R. Orús et al., “Quantum Computing for Finance”.

[15] A. L. Peressini et al., The Mathematics of Nonlinear Programming.

[16] C. P. Simon and L. Blume, Mathematics for Economists.

[17] J. P. Wheeler, An Introduction to Optimization.

[18] O. Zapata, “An Introduction to Quantum Computing for Physicists”.

[19] O. Zapata, “Notes for a Second Course on Quantum Computing for Physicists”.

58

Index

n qubit, 5
n-qubit gate, 6

Algorithm, 3
Ansatz state, 56, 57
Asset, 33
Attainable set, 45
Average portfolio return rate, 36

Binary digit (bit), 3
Binary knapsack problem, 32
Binary linear program, 32
Binary portfolio optimization

problem, 49
Binary program, 31
Binary quadratic function, 32
Bit-flip error, 7
Bit-flip quantum repetition code, 8
Boolean (binary) model of

computation , 3
Boolean algebra, 3
Boolean circuit, 4
Boolean function, 4

Circuit complexity, 4
Circuit diagram, 4
CNOT gate, 6
Computational basis states, 5
Computational error, 4, 7
Constrained continuous optimization

problem, 22
Constrained integer programs, 30
Constraint, 22
Continuous optimization, 16
Convex function, 29
Convex program, Convex

optimization problem, 29
Convex set, 28
Correlation coefficient, 46
Cost Hamiltonian, 53
Cost layer, 56
Covariance, 38
Covariance matrix, 39, 43
Critical point, 16, 18, 19

Decision variable, 12
Decoherence, 7

Diet problem, 26
Digital (classical) computer, 4
Discrete random variable, 37
Diversification, 47
Dual program, 29
Duality (Lagrange), 29

Efficient (optimal) portfolio, 45
Efficient circuit, 4
Efficient frontier, 45
Epigraph, 29
Equality constraint, 12
Event, 38
Expected portfolio return rate, 41
Expected stock return rate, 40
Expected value, Average, Mean, 38
Extremum, 11

Fault-tolerant quantum computer, 9
Fault-tolerant quantum era, 9
Fractional expected return rate of a

stock, 48
Fractional return rate of a stock, 49

Hessian, 17
Hessian matrix, 17–19
Heuristic algorithms, 9
Hybrid quantum-classical algorithms,

9, 51
Hypograph, 45

Inefficient (suboptimal) portfolio, 45
Inequality constraint, 12
Inflection point, 10
Input, 4
Integer programs, Integer

optimization problems, 30

Jacobian matrix, 21
Joint probability, 39

Knapsack problem, 30

Lagrange multiplier, 13, 24
Lagrange multipliers method, 24
Lagrange multipliers vector, 24
Lagrangian function, 13, 24
Layer, 56

59

Linear constraints, 27
Linear integer program, 31
Linear objective function, 27
Linear program, Linear optimization

problem, 27
Logical gate (Boolean), 3
Logical gate (quantum), 4
Logical qubit, 8
Loss, 34

Maximizer, 10, 17–19
Mean-variance model, 43
Minimizer, 10, 17–19
Mixed integer linear program, 31
Mixer Hamiltonian, 55
Mixer layer, 56
Model of computation, 3
Modern portfolio theory, 33, 43

Newton method, 19
NISQ era, 9

Objective function, 11
Optimizer, 10, 17
Output, 4

Parameter (of an optimization
problem), 12

Parity check, 8
Pauli gates, 5
Physical qubit, 8
Portfolio, 34
Portfolio optimization problem, 33
Portfolio price, 33
Portfolio return, 34
Portfolio return rate, 35, 41
Price vector, 35
Primal program, 29
Probability distribution, 37
Probability function, 38
Probability mass function, 37
Probability of occurrence, 37
Profit, 34

QAOA, Quantum Approximate
Optimization Algorithm, 51

Quadratic objective function, 27
Quadratic program, Quadratic

optimization problem, 28
Quantum advantage, 9

Quantum algorithm, 4
Quantum circuit, 4
Quantum circuit model of

computation, 5
Quantum computation, 3
Quantum computer, 5
Quantum gate, 5
Quantum measurement, 6
Quantum model of computation, 4
Quantum supremacy, 9
Qubit (quantum binary digit), 4
QUBO problem, 32

Random-walk theory of stock prices,
37

Relative phase gate, Phase shift gate,
5

Return rate vector, 35
Risk, 43
Risk aversion coefficient, 43
Risk curve, 44
Risk tolerance, 43
Riskless (risk-free) asset, 43
Risky asset, 43
Rotation gate, 6

Saddle point, 17–19
Sample space, 37
Second derivative test, 10, 17–19
Set of universal quantum gates, 6
Single qubit, 5
Single-period investment model, 36
Standard deviation, 38
Steepest (gradient) descent method,

21
Step size, 21
Stock (share), 33
Stock price, 33, 39
Stock return, 34, 40
Stock return rate, 35, 40
Stock weight, 33
Strict hypograph, 45

Taylor’s formula, 11, 17

Unconstrained integer program, 30

Variance, 38
Variance of a portfolio return rate,

41, 43

60

Variance of a stock return rate, 40

Variational quantum algorithms
(VQAs), 9

Vector of expected return rates, 42
Volatility, 43

Weight vector, 35, 42

61

	Introduction
	Quantum Bits
	Classical Bits
	Single Qubits
	Multiple Qubits

	Quantum Circuits
	Classical Circuit Gates
	Single-Qubit Gates
	Multiple Single-Qubit Gates
	Multi-Qubit Gates
	Measurement

	Quantum Algorithms
	Deutsch's Algorithms
	Shor's Factoring Algorithm
	Superdense Coding and Teleportation
	Quantum Simulation

	Quantum Error Correction
	Entanglement with the Environment
	Classical Error Correction
	Generalities on QEC Codes
	Single Qubit Error Correction

	Bibliography
	Introduction
	The Density Operator Formalism
	Density Operators
	Multipartite Systems
	State Evolution
	Measurement

	Information
	Classical Information Theory
	Quantum Information Theory

	Algorithms and Secure Communication
	Quantum Phase Estimation
	The Variational Quantum Eigensolver
	Quantum Cryptography
	BB84 Protocol

	Error Correction and Fault Tolerance
	Single-Qubit Quantum Channels
	Stabilizers Circuits
	Stabilizer QEC Codes
	Fault-Tolerant QEC

	Bibliography
	Introduction
	Quantum Computing Review
	Main Concepts
	Computational Errors and Fault Tolerance
	Hybrid Quantum-Classical Algorithms

	Elements of Optimization Theory
	Continuous Optimization
	Unconstrained Problems
	Constrained Problems

	Dual Optimization Problems
	Integer Programs

	Classical Portfolio Optimization Theory
	Mathematical Description of an Investment Portfolio
	The Mean-Variance Model
	Portfolio Optimization as a Quadratic Programming

	Quantum Portfolio Optimization
	The Quantum Approximate Optimization Algorithm
	Portfolio Optimization via the QAOA

	Bibliography

